CDH2 (cadherin 2, Neural-cadherin, or N-cadherin) is the predominant protein of testicular basal ectoplasmic specializations (basal ES; a testis-specific type of adhesion junction), one of the major cell junctions composing the blood-testis barrier (BTB). The BTB is found between adjacent Sertoli cells in seminiferous tubules, which divides the tubules into basal and adluminal compartments and prevents the deleterious exchange of macromolecules between blood and seminiferous tubules. However, the exact roles of basal ES protein CDH2 in BTB function and spermatogenesis is still unknown. We thus generated mice with Cdh2 specifically knocked out in Sertoli cells by crossing Cdh2 loxP mice with Amh-Cre mice. Cdh2 deletion in Sertoli cells did not affect Sertoli cell counts, but led to compromised BTB function, delayed meiotic progression from prophase to metaphase I in testes, increased germ cell apoptosis, sloughing of meiotic cells, and, subsequently, reduced sperm counts in epididymides and subfertility of mice. However, the testes with Cdh2-specific deletion in germ cells did not show any difference from the normal control testes, and phenotypes observed in Sertoli cell and germ cell Cdh2 double-knockout mice were indistinguishable from those in mice with Cdh2 specifically knocked out only in Sertoli cells. Taken together, our data demonstrate that the adhesion junction component, Cdh2, functions just in Sertoli cells, but not in germ cells during spermatogenesis, and is essential for the integrity of BTB function, its deletion in Sertoli cells would lead to the BTB damage and subsequently meiosis and spermatogenesis failure.
There are more than 2300 genes that are predominantly expressed in mouse testes. The role of hundreds of these genes has been studied in mouse spermatogenesis but still there are many genes whose function is unknown. Gene knockout (KO) strategy in mice is widely used for in vivo study of gene function. The present study was designed to explore the function of the four genes: Tex37, Ccdc73, Prss55 and Nxt2, which were evolutionarily conserved in eutherians. We found that these genes had a testis-enriched expression pattern in mice except Nxt2. We knocked out these genes by CRISPR/Cas9 individually and found that all the KO mice had normal fertility with no detectable difference in testis/body weight ratios, epididymal sperm counts, as well as testicular and epididymal histology from wild type mice. Although these genes are evolutionarily conserved in eutherians including human and mouse, they are not individually essential for spermatogenesis, testis development and male fertility in mice in laboratory conditions. Our report of these fertile KO data could avoid the repetition and duplication of efforts which will help in prioritizing efforts to focus on genes that are indispensable for male reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.