BackgroundMalaria is a major mosquito-borne public health problem in Thailand with varied haematological consequences. The study sought to elucidate the haematological changes in people who suspected malaria infection and their possible predictive values of malaria infection.MethodsHaematological parameters of 4,985 patients, including 703 malaria-infected and 4,282 non-malaria infected, who admitted at Phop Phra Hospital, Tak Province, an area of malaria endemic transmission in Thailand during 2009 were evaluated.ResultsThe following parameters were significantly lower in malaria-infected patients; red blood cells (RBCs) count, haemoglobin (Hb), platelets count, white blood cells (WBCs) count, neutrophil, monocyte, lymphocyte and eosinophil counts, while mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), Mean corpuscular haemoglobin concentration (MCHC), neutrophil-lymphocyte ratio (NLR), and monocyte-lymphocyte ratio (MLR) were higher in comparison to non-malaria infected patients. Patients with platelet counts < 150,000/uL were 31.8 times (odds ratio) more likely to have a malaria infection. Thrombocytopenia was present in 84.9% of malaria-infected patients and was independent of age, gender and nationality (P value < 0.0001).ConclusionPatients infected with malaria exhibited important changes in most of haematological parameters with low platelet, WBCs, and lymphocyte counts being the most important predictors of malaria infection. When used in combination with other clinical and microscopy methods, these parameters could improve malaria diagnosis and treatment.
Changes in blood cell parameters are already a well-known feature of malarial infections. To add to this information, the objective of this study was to investigate the varying effects that different levels of parasite density have on blood cell parameters. Patients diagnosed with malaria at Phobphra Hospital, Tak Province, Thailand between January 1st 2009 and January 1st 2012 were recruited as subjects for data collection. Blood cell parameters of 2,024 malaria-infected patients were evaluated and statistically analyzed. Neutrophil and platelet counts were significantly higher, however, RBC count was significantly lower in patients with P. falciparum infection compared to those with P. vivax infection (p<0.0001). Leukocyte counts were also significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia. In terms of differential leukocyte count, neutrophil count was significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia (p<0.0001). On the other hand, both lymphocyte and monocyte counts were significantly lower in patients with high parasitemia (p<0.0001). RBC count and Hb concentration, as well as platelet count were also significantly reduced (p<0.05) and (p<0.0001), respectively. To summarize, patients infected with different malaria parasites exhibited important distinctive hematological parameters, with neutrophil and eosinophil counts being the two hematological parameters most affected. In addition, patients infected with different malarial densities also exhibited important changes in leukocyte count, platelet count and hemoglobin concentration during the infection. These findings offer the opportunity to recognize and diagnose malaria related anemia, help support the treatment thereof, as well as relieve symptoms of severe malaria in endemic regions.
Diet may play a role in both promoting and inhibiting human breast cancer development. In this review, nutritional risk factors such as consumption of dietary fat, meat, fiber, and alcohol, and intake of phytoestrogen, vitamin D, iron, and folate associated with breast cancer are reviewed. These nutritional factors have a variety of associations with breast cancer risk. Type of fat consumed has different effects on risk of breast cancer: consumption of meat is associated with heterocyclic amine (HCA) exposure; different types of plant fiber have various effects on breast cancer risk; alcohol consumption may increase the risk of breast cancer by producing acetaldehyde and reactive oxygen species (ROS); intake of phytoestrogen may reduce risk of breast cancer through genomic and non-genomic action; vitamin D can reduce the risk of breast cancer by inhibiting the process of cancer invasion and metastasis; intake of dietary iron may lead to oxidative stress, DNA damage, and lipid peroxidation; and lower intake of folate may be linked to a higher risk of breast cancer.
Background The world population is currently at a very high risk of Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). People who live in malaria-endemic areas and get infected by SARS-CoV-2 may be at increased risk of severe COVID-19 or unfavorable disease outcomes if they ignore their malaria status. Therefore, the present study aimed to synthesize, qualitatively and quantitatively, information on the prevalence and characteristics of malaria infection among COVID-19-infected individuals. The findings will help us better understand this particular comorbidity during the COVID-19 pandemic. Methods The systematic review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO) with the identification number: CRD42021247521. We searched for studies reporting on the coinfection of COVID-19 and malaria in PubMed, Web of Science, and Scopus from inception to March 27, 2021 using Medical Subject Headings (MeSH) terms. The study’s methodological quality in the search output was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Tools for cross-sectional study. The pooled prevalence of Plasmodium spp. infection among patients infected with COVID-19 was estimated using the random effect model and then graphically presented as forest plots. The heterogeneity among the included studies was assessed using Cochrane Q and I2 statistics. The characteristics of patients co-infected with COVID-19 and malaria were derived from case reports and series and were formally analyzed using simple statistics. Results Twelve of 1,207 studies reporting the coinfection of COVID-19 and malaria were selected for further analysis. Results of quantitative synthesis show that the pooled prevalence of Plasmodium spp. infection (364 cases) among COVID–19 individuals (1,126 cases) is 11%, with a high degree of heterogeneity (95% CI: 4%–18%, I2: 97.07%, 5 studies). Most of the coinfections were reported in Nigeria (336 cases), India (27 cases), and the Democratic Republic of Congo (1 case). Results of qualitative synthesis indicate that patients with coinfection are typically symptomatic at presentation with mild or moderate parasitemia. An analysis of case reports and series indicates that co-infected individuals often display thrombocytopenia, lymphopenia, and elevated bilirubin levels. Among four patients (30%) who required treatment with intravenous artesunate, one experienced worsened clinical status after administering the drug. One serious outcome of coinfection involved a pregnant woman who experienced fetal abortion due to the initial misdiagnosis of malaria. Conclusions All individuals in malaria-endemic regions who are febrile or display symptoms of COVID-19 should be evaluated for malaria to avoid serious complications. Further prospective studies are required to investigate the burden and outcomes of COVID-19 in malaria-endemic regions. Prompt management is required to prevent serious outcomes in individuals co-infected with COVID-19 and malaria.
Mixed Plasmodium malaria infections can lead to severe malaria. This systematic review and meta-analysis aimed to explore the prevalence of severe mixed Plasmodium malaria infection and to compare it with the prevalence of severe P. falciparum malaria mono-infection across the included studies. Original English-language research articles from PubMed, Scopus, and ISI Web of Science were identified and screened. Articles reporting the number of mixed infections and the number of severe mixed infections were used to determine the main outcome of this study, while the number of P. falciparum infections and the number of severe P. falciparum infections were used to determine the secondary outcome of this study. For the main outcome, the pooled prevalence and 95% confidence interval (CI) of severe mixed infections was analysed using STATA software version 15.0 (Stata Corp, College Station, TX, USA). For the secondary outcome, the rate of severe mixed infections compared to severe P. falciparum infections was analysed using the meta-analysis approach, and summary odds ratios (ORs) and 95% CIs were calculated. Random-effects models were used to produce the summary ORs. The Mantel–Haenszel method and calculated I2 were also reported to test whether there was heterogeneity among the included studies. Publication bias was also assessed using funnel plots. The meta-analysis of secondary outcomes was conducted using Review Manager 5.3 software (Cochrane Community). A total of 894,561 malaria patients were reported in all 16 included studies. Overall, a pooled analysis showed that 9% (2,006/35,768, 95% CI 7.0–12.0%) of patients with mixed Plasmodium infection had severe mixed infection. A meta-analysis of 14 studies demonstrated that patients with mixed Plasmodium infection (1,999/35,755) and patients with P. falciparum malaria (9,249/294,397) had an equal risk of developing severe malaria (OR 0.93, 95% CI 0.59–1.44). Both mixed infection and P. falciparum mono-infection showed a similar trend of complications in which severe anaemia, pulmonary failure, and renal impairment were the three most common complications found. However, patients with mixed infection had a higher proportion of severe anaemia and pulmonary complications than those with P. falciparum infection. Moreover, patients with mixed infection had a higher proportion of multiple organ failure than those with P. falciparum mono-infection. Mixed Plasmodium spp. infections were common but often unrecognized or underestimated, leading to severe complications among these malaria patients. Therefore, in routine clinical laboratories, using an accurate combination of diagnostic procedures to identify suspected patients with mixed infections is crucial for therapeutic decisions, prompt treatment, and effective patient management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.