Rhodopseudomonas palustris TN1 was isolated from Songkhla Lake, Thailand. It phototrophically generates H(2) from the predominant volatile fatty acids (VFAs) produced from microbial dark-fermentations of palm oil milling effluent; yields from 20 mM butyrate, acetate and propionate were 4.7, 2.5, and 1.7 mol H(2) mol VFA(-1) with light efficiencies of 1.8, 1, and 0.2%, respectively. Optimum conditions were pH 7 and 3000 lux, although production was reduced by only 33% at 1000 lux. CO(2) evolution never exceeded 9 mmol mol VFA(-1).
Palm pressed fiber (PPF) is a clean and renewable lignocellulosic material. The PPF and delignified PPF (DPPF) were used as a carrier for immobilization of Candida shehatae TISTR5843 in bioethanol production. PPF was pre-treated by milling to obtain small particles, whereas DPPF was the delignification of PPF using NaClO2. C. shehatae TISTR5843 was grown in modified yeast extractmalt (YM) medium at 30 ± 2ºC on an orbital shaker at 150 rpm for batch and repeated batch fermentation. In the batch system, immobilized cells on a small size, less than 0.5 mm, of DPPF (sDPPF) gave the maximum ethanol production of 11.5 g L -1 at 24 hrs cultivation period. The ethanol concentration and ethanol yield of sDPPF were 6.2% and 6.8% higher (ethanol production 11.5 g L -1 , ethanol yield 0.47 g g -1 ) than those of free cells (ethanol production 10.8 g L -1 , ethanol yield 0.44 g g -1 ) after 36 hrs of cultivation. In contrast, the small size of PPF (sPPF) was selected as a carrier in repeated batch fermentation for cost effectiveness. The ethanol productivity of immobilized yeast cells in repeated batch fermentations was 45.2-51.6% greater than that obtained from batch fermentations. The immobilized cells on sPPF improved the ethanol production and could be reused 4 times with retaining the activity of 93%. In conclusion, PPF is a potential carrier in the immobilization system. The pre-treatment of PPF increases the surface area that enhances cell adsorption and ethanol production by C. shehatae TISTR5843.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.