Background: Observation of a goal-directed motor action can excite the respective mirror neurons, and this is the theoretical basis for action observation (AO) as a novel tool for functional recovery during stroke rehabilitation. To explore the therapeutic potential of AO for dysphagia, we conducted a task-based functional magnetic resonance imaging (fMRI) study to identify the brain areas activated during observation and execution of swallowing in healthy participants. Methods: Twenty-nine healthy volunteers viewed the following stimuli during fMRI scanning: an action-video of swallowing (condition 1, defined as AO), a neutral image with a Chinese word for "watching" (condition 2), and a neutral image with a Chinese word for "swallowing" (condition 3). Action execution (AE) was defined as condition 3 minus condition 2. One-sample t-tests were performed to define the brain regions activated during AO and AE. Results: Many brain regions were activated during AO, including the middle temporal gyrus, inferior frontal gyrus, pre-and postcentral gyrus, supplementary motor area, hippocampus, brainstem, and pons. AE resulted in activation of motor areas as well as other brain areas, including the inferior parietal lobule, vermis, middle frontal gyrus, and middle temporal gyrus. Two brain areas, BA6 and BA21, were activated with both AO and AE. Conclusion: The left supplementary motor area (BA6) and left middle temporal gyrus (BA21), which contains mirror neurons, were activated in both AO and AE of swallowing. In this study, AO activated mirror neurons and the swallowing network in healthy participants, supporting its potential value in the treatment of dysphagia.
BackgroundRepetitive transcranial magnetic stimulation (rTMS) is a promising intervention for stroke rehabilitation. Several studies have demonstrated the effectiveness of rTMS in restoring motor function. This meta-analysis aimed to summarize the current evidence of the effect of rTMS in improving upper limb function and fine motor recovery in stroke patients.MethodsThree online databases (Web of Science, PubMed, and Embase) were searched for relevant randomized controlled trials. A total of 45 studies (combined n = 2064) were included. Random effects model was used for meta-analysis and effect size was reported as standardized mean difference (SMD).ResultsrTMS was effective in improving fine motor function in stroke patients (SMD, 0.38; 95% CI 0.19–0.58; P = 0). On subgroup analyses, for post-stroke functional improvement of the upper extremity, bilateral hemisphere stimulation was more effective than unilateral stimulation during the acute phase of stroke, and a regimen of 20 rTMS sessions produced greater improvement than <20 sessions. In the subacute phase of stroke, affected hemispheric stimulation with a 40-session rTMS regimen was superior to unaffected hemispheric stimulation or bilateral hemispheric stimulation with <40 sessions. Unaffected site stimulation with a 10-session rTMS regimen produced significant improvement in the chronic phase compared to affected side stimulation and bilateral stimulation with >10 rTMS sessions. For the rTMS stimulation method, both TBS and rTMS were found to be significantly more effective in the acute phase of stroke, but TBS was more effective than rTMS. However, rTMS was found to be more effective than TBS stimulation in patients in the subacute and chronic phases of stroke. rTMS significantly improved upper limb and fine function in the short term (0–1-month post-intervention) and medium term (2–5 months), but not for upper limb function in the long term (6 months+). The results should be interpreted with caution due to significant heterogeneity.ConclusionsThis updated meta-analysis provides robust evidence of the efficacy of rTMS treatment in improving upper extremity and fine function during various phases of stroke.Systematic Review Registrationhttps://inplasy.com/inplasy-2022-5-0121/, identifier: INPLASY202250121.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.