Reference materials for the analysis of polybrominated diphenyl ethers, polybrominated biphenyls and other common brominated flame retardants (FR) in styrenic polymers were prepared to suit the demands of actual restriction of the use of certain hazardous substances in electrical and electronic equipment analytics. Three methods of preparation were employed, viz. pellet forming, dissolution/vaporisation and extrusion, whereby extrusion proved to be the most suitable method. For extrusion, three procedures of pre-mixing were investigated: the polymers were either mixed with FR powder, FR solutions or FR concentrates that were taken from waste industrial polymers. The latter procedure proved to be most appropriate in terms of analyte concentration, predictability and recovery. The homogeneity of the samples, as well as the chemical and thermal long-term stabilities, was investigated. The result was an optimised method to prepare a suitable reference material for laboratory use.
Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.