Trace gases such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are climate-related gases, and their emissions from agricultural livestock barns are not negligible. Conventional measurement systems in the field (Fourier transform infrared spectroscopy (FTIR); photoacoustic system (PAS)) are not sufficiently sensitive to N2O. Laser-based measurement systems are highly accurate, but they are very expensive to purchase and maintain. One cost-effective alternative is gas chromatography (GC) with electron capture detection (ECD), but this is not suitable for field applications due to radiation. Measuring samples collected automatically under field conditions in the laboratory at a subsequent time presents many challenges. This study presents a sampling designed to promote laboratory analysis of N2O concentrations sampled under field conditions. Analyses were carried out using PAS in the field (online system) and GC in the laboratory (offline system). Both measurement systems showed a good correlation for CH4 and CO2 concentrations. Measured N2O concentrations were near the detection limit for PAS. GC achieved more reliable results for N2O in very low concentration ranges.
Simple SummaryDefined criteria for the application of the CO2 balance method in a naturally ventilated barn provided reliable data. This specification enabled the acquisition and quantification of CH4 and NH3 in a naturally ventilated dairy barn, as well as detecting decreasing NH3 emissions affected by supplementing an Acacia mearnsii condensed tannin extract to a dairy cattle ration. Moreover, long-term measurements were possible and can be used to examine feed-related mitigation strategies at a barn level in the future.AbstractExtensive experimentation on individual animals in respiration chambers has already been carried out to evaluate the potential of dietary changes and opportunities to mitigate CH4 emissions from ruminants. Although it is difficult to determine the air exchange rate of open barn spaces, measurements at the herd level should provide similarly reliable and robust results. The primary objective of this study was (1) to define a validity range (data classification criteria (DCC)) for the variables of wind velocity and wind direction during long-term measurements at barn level; and (2) to apply this validity range to a feeding trial in a naturally cross-flow ventilated dairy barn. The application of the DCC permitted quantification of CH4 and NH3 emissions during a feeding trial consisting of four periods. Differences between the control group (no supplement) and the experimental group fed a ration supplemented with condensed Acacia mearnsii tannins (CT) became apparent. Notably, CT concentrations of 1% and 3% of ration dry matter did not reduce CH4 emissions. In contrast, NH3 emissions decreased 34.5% when 3% CT was supplemented. The data confirm that quantification of trace gases in a naturally ventilated barn at the herd level is possible.
Simple Summary: Efficient slurry management is a key strategy to reduce the release of environmentally harmful gases produced by farm animals. Slurry treatments such as acidification and alkalization have proven to be promising solutions to reduce these emissions. In this context, it is crucial to understand how buffer capacities behave and may influence each other during storage under the influence of different temperatures. To realize this, we have developed and successfully verified a new mathematical tool. It allows an exact calculation and detailed visualization of the most important buffer systems found in the analyzed slurries. This knowledge can be used to optimize slurry treatments, as it allows faster, more precise and efficient timing of pH adjustment, thus, reducing the use of resources.Abstract: Slurry treatments such as acidification and alkalization have proven to be promising solutions to reduce gaseous emission produced by farm animals. The optimization of these technologies requires detailed knowledge of how and to what extent the buffer capacities in slurries will change during storage under the influence of different temperatures, as this may save resources needed to adjust a targeted pH value. Fresh slurries from dairy cows, fattening pigs and sows were collected and stored for 12 weeks under either cold (4.7 ± 1.1 • C) or warm (23.6 ± 2.1 • C) conditions to perform titrations in acidic and alkaline milieu at regular intervals. Based on these results, we successfully verified a new mathematical tool that we have developed to be able to calculate and visualize the most important buffer systems found in the analyzed slurries. Our experimental results showed a strong correlation between the degradation of the volatile fatty acid (VFA) buffer and the emergence of the carbonate buffers, i.e., the HCO 3 − and the CO 3 2− buffer. Furthermore, a drop in the pH value caused by enhanced microbial production of VFAs can be mitigated by the presence of the NH 3 buffer. In conclusion, we demonstrated that the buffers cannot be considered individually but must be interpreted as a complex and interacting system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.