There has been a resurgence of interest in nanoemulsions for various pharmaceutical applications since low-energy emulsification methods, such as spontaneous or self-nanoemulsification, have been described. Self-nanoemulsifying drug delivery systems (SNEDDS) are anhydrous homogenous liquid mixtures consisting of oil, surfactant, drug and coemulsifier or solubilizer, which spontaneously form oil-in-water nanoemulsion of approximately 200 nm or less in size upon dilution with water under gentle stirring. The physicochemical properties, drug solubilization capacity and physiological fate considerably govern the selection of the SNEDDS components. The composition of the SNEDDS can be optimized with the help of phase diagrams, whereas statistical experimental design can be used to further optimize SNEDDS. SNEDDS can improve oral bioavailability of hydrophobic drugs by several mechanisms. The conversion of liquid SNEDDS to solid oral dosage forms or solid SNEDDS has also been achieved by researchers. Solid SNEDDS can offer better patient compliance and minimize problems associated with capsules filled with liquid SNEDDS.
Highlights• Liposomes and their related constructs offer unique advantages in terms of drug and vaccine delivery.• However, current processes used for the manufacture of liposomes present a range of challenges, driving up cost, and limiting production.• New production methods can address these issues and support the cost-effective manufacture of current liposomal systems and facilitate the development of new liposomal products.
Abstract. The present investigation was undertaken with the objective of formulating TC containing fast dissolving films for local delivery to oral cavity. Various film forming agents, film modifiers and polyhydric alcohols were evaluated for optimizing the composition of fast dissolving films. The potential of poloxamer 407 and hydroxypropyl-β-cyclodextrin (HPBCD) to improve solubility of TC was investigated. Fast dissolving films containing hydroxypropyl methylcellulose (HPMC), xanthan gum, and xylitol were formulated. Use of poloxamer 407 and HPBCD resulted in significant improvement in the solubility of TC. Fast dissolving films containing TC-HPBCD complex and TC-Poloxamer 407 were formulated and were evaluated for the in vitro dissolution profile and in vitro microbiological assay. Films containing TC-Poloxamer 407 exhibited better in vitro dissolution profile and in vitro antimicrobial activity as compared to the films containing TC-HPBCD complex. Effect of incorporation of eugenol on the in vivo performance of TC-Poloxamer 407 containing films was evaluated in human volunteers. Eugenol containing films improved the acceptability of TC-Poloxamer 407 films with respect to taste masking and mouth freshening without compromising the in vivo dissolution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.