Based on the structural and experimental studies of more than 300 insect species from different lineages, we have developed and characterized a bioinspired polymer material with the ability of multiple glue-free bonding and debonding. The material surface is covered with a pattern of microstructures, which resembles the geometry of tenent hairs previously described from the feet of flies, beetles, earwigs and other insects. The tape with such a microstructure pattern demonstrates at least two times higher pull-off force per unit apparent contact area compared to the flat polymer. Additionally, the tape is less sensitive to contamination by dust particles than a commercially available pressure-sensitive adhesive tape. Even if the 'insect tape' is contaminated, it can be washed with a soap solution in water, in order to completely recover its adhesive properties. We have successfully applied the tape to the 120 g wall-climbing robot Mini-Whegs. Furthermore, the tape can be used for multiple adhering of objects to glass surfaces or as a protective tape for sensitive glass surfaces of optical quality. Another area of potential applications is gripping and manipulation of objects with smooth surfaces.
We present the experimental end-station TRIXS dedicated to time-resolved soft x-ray resonant inelastic x-ray scattering (RIXS) experiments on solid samples at the free-electron laser FLASH. Using monochromatized ultrashort femtosecond XUV/soft x-ray photon pulses in combination with a synchronized optical laser in a pump-probe scheme, the TRIXS setup allows measuring sub-picosecond time-resolved high-resolution RIXS spectra in the energy range from 35 eV to 210 eV, thus spanning the M-edge (M
1
and M
2,3
) absorption resonances of 3d transition metals and N
4,5
-edges of rare earth elements. A Kirkpatrick–Baez refocusing mirror system at the first branch of the plane grating monochromator beamline (PG1) provides a focus of (6 × 6)
μ
m
2
(FWHM) at the sample. The RIXS spectrometer reaches an energy resolution of 35–160 meV over the entire spectral range. The optical laser system based on a chirped pulse optical parametric amplifier provides approximately 100 fs (FWHM) long photon pulses at the fundamental wavelength of 800 nm and a fluence of 120 mJ/cm
2
at a sample for optical pump-XUV probe measurements. Furthermore, optical frequency conversion enables experiments at 400 nm or 267 nm with a fluence of 80 and 30 mJ/cm
2
, respectively. Some of the first (pump-probe) RIXS spectra measured with this setup are shown. The measured time resolution for time-resolved RIXS measurements has been characterized as 287 fs (FWHM) for the used energy resolution.
In the present study, surface and interface characterization of magnesium oxide (MgO) thin film is carried out by using non‐destructive soft X‐ray reflectivity and absorption technique. To get a further insight about the in‐depth and surface composition, secondary ion mass spectroscopy measurement is also carried out. The analysis of the reflectivity data indicates the presence of Mg‐Si‐O layer between the principal layer (MgO) and Si substrate interface. The secondary ion mass spectroscopy spectra corroborate well with the model assumed in the analysis of the reflectivity data. Combined soft X‐ray reflectivity‐total electron yield result confirms the presence of low‐density MgO on top of principal MgO layer. Total electron yield result confirms the rocksalt structure of the film and provides a glimpse of the electronic structure near the O‐K absorption edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.