The mitogen activated protein (MAP) kinase ERK2 contains recruitment sites that engage canonical and non-canonical motifs found in a variety of upstream kinases, regulating phosphatases and downstream targets. Interactions involving two of these sites, the D-recruitment site (DRS) and the F-recruitment site (FRS), have been shown to play a key role in signal transduction by ERK/MAP kinases. The dynamic nature of these recruitment events makes NMR uniquely suited to provide significant insight into these interactions. While NMR studies of kinases in general have been greatly hindered by their large size and complex dynamic behavior leading to the sub-optimal performance of standard methodologies, we have overcome these difficulties for inactive full-length ERK2 and obtained an acceptable level of backbone resonance assignments. This allowed a detailed investigation of the structural perturbations that accompany interactions involving both canonical and non-canonical recruitment events. No crystallographic information exists for the latter. We found that the chemical shift perturbations in inactive ERK2, indicative of structural changes in the presence of canonical and non-canonical motifs, are not restricted to the recruitment sites, but also involve the linker that connects the N- and C-lobes and, in most cases, a gatekeeper residue that is thought to exert allosteric control over catalytic activity. We also found that, even though the canonical motifs interact with the DRS utilizing both charge-charge and hydrophobic interactions, the non-canonical interactions primarily involve the latter. These results demonstrate the feasibility of solution NMR techniques for a comprehensive analysis of docking interactions in a full-length ERK/MAP kinase.
Evidence is emerging that elongation factor 2 kinase (eEF-2K) has potential as a target for anti-cancer therapy and possibly for the treatment of depression. Here the steady-state kinetic mechanism of eEF-2K is presented using a peptide substrate and is shown to conform to an ordered sequential mechanism with ATP binding first. Substrate inhibition by the peptide was observed and revealed to be competitive with ATP, explaining the observed ordered mechanism. Several small molecules are reported to inhibit eEF-2K activity with the most notable being the histidine kinase inhibitor NH125, which has been used in a number of studies to characterize eEF-2K activity in cells. While NH125 was previously reported to inhibit eEF-2K in vitro with an IC50 of 60 nM its mechanism of action was not established. Using the same kinetic assay the ability of an authentic sample of NH125 to inhibit eEF-2K was assessed over a range of substrate and inhibitor concentrations. A typical dose-response curve for the inhibition of eEF-2K by NH125 is best fit to an IC50 of 18 ± 0.25 µM and a Hill coefficient of 3.7 ± 0.14, suggesting that NH125 is a weak inhibitor of eEF-2K under the experimental conditions of a standard in vitro kinase assay. To test the possibility that NH125 is a potent inhibitor of eEF2 phosphorylation we assessed its ability to inhibit the phosphorylation of eEF2. Under standard kinase assay conditions NH125 exhibits similar weak ability to inhibit the phosphorylation of eEF2 by eEF-2K. Notably, the activity of NH125 is severely abrogated by the addition of 0.1 % triton to the kinase assay through a process that can be reversed upon dilution. These studies suggest that NH125 is as a non-specific colloidal aggregator in vitro, a notion further supported by the observation that NH125 inhibits other protein kinases, such as ERK2 and TRPM7 in a similar manner to eEF-2K. As NH125 is reported to inhibit eEF-2K in a cellular environment its ability to inhibit eEF2 phosphorylation was assessed in MDA-MB-231 breast cancer, A549 lung cancer and HEK-293T cell lines using a Western blot approach. No sign of decrease in the level of eEF2 phosphorylation was observed up to 12 hours following addition of NH125 to the media. Furthermore, contrary to the previously reported literatures, NH125 induced the phosphorylation of eEF-2.
Background: Eukaryotic elongation factor 2 kinase (eEF-2K) regulates protein translation elongation rates. Results: eEF-2K activation involves a two-step process of calmodulin binding and rapid Thr-348 autophosphorylation. Conclusion: Activation of eEF-2K involves two distinct allosteric steps, both of which potentially induce a conformational change. Significance: This mechanism provides a framework for understanding how eEF-2K integrates inputs from multiple upstream signaling pathways.
The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)2-3-X2-6-ΦA-X-ΦB, where Φ is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets) make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling, a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus 7RK-X2-ΦA-X-ΦB 13. This results in a 2-fold increase in k cat/K m for the phosphorylation of Ets by ERK2. Similarly, the substitution of the N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves k cat/K m by two-fold compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease in k cat/K m, with little apparent change in k cat. A peptide that binds to the DRS of ERK2 affects K m, but not k cat. Our kinetic analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state ERK2•Ets•MgATP complex and intermediates of the enzymatic reaction.
Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca2+ and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was co-expressed with λ-phosphatase, and purified from bacteria in a three-step protocol using a calmodulin-affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca2+/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0–180 minutes. The following five major autophosphorylation sites were identified, Thr-348, Thr-353, Ser-445, Ser-474 and Ser-500. In the presence of Ca2+/CaM, robust phosphorylation of Thr-348 occurs within seconds of adding MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348, and is associated with calcium-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K calcium-independent. Surprisingly, this calcium-independent activity requires the presence of calmodulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.