Grey wolf optimizer (GWO) is a very efficient metaheuristic inspired by the hierarchy of the Canis lupus wolves. It has been extensively employed to a variety of practical applications. Crow search algorithm (CSA) is a recently proposed metaheuristic algorithm, which mimics the intellectual conduct of crows. In this paper, a hybrid GWO with CSA, namely GWOCSA is proposed, which combines the strengths of both the algorithms effectively with the aim to generate promising candidate solutions in order to achieve global optima efficiently. In order to validate the competence of the proposed hybrid GWOCSA, a widely utilized set of 23 benchmark test functions having a wide range of dimensions and varied complexities is used in this paper. The results obtained by the proposed algorithm are compared to 10 other algorithms in this paper for verification. The statistical results demonstrate that the GWOCSA outperforms other algorithms, including the recent variants of GWO called, enhanced grey wolf optimizer (EGWO) and augmented grey wolf optimizer (AGWO) in terms of high local optima avoidance ability and fast convergence speed. Furthermore, in order to demonstrate the applicability of the proposed algorithm at solving complex real-world problems, the GWOCSA is also employed to solve the feature selection problem as well. The GWOCSA as a feature selection approach is tested on 21 widely employed data sets acquired from the University of California at Irvine repository. The experimental results are compared to the stateof-the-art feature selection techniques, including the native GWO, the EGWO, and the AGWO. The results reveal that the GWOCSA has comprehensive superiority in solving the feature selection problem, which proves the capability of the proposed algorithm in solving real-world complex problems. INDEX TERMS Grey wolf optimizer, crow search algorithm, hybrid algorithm, function optimization, feature selection.
Landslides, floods, and droughts are recurring natural disasters in Nepal related to too much or too little water. The summer monsoon contributes more than 80% of annual rainfall, and rainfall spatial and inter-annual variation is very high. The Gandaki River, one of the three major rivers of Nepal and one of the major tributaries of the Ganges River, covers all agro-ecological zones in the central part of Nepal. Time series tests were applied for different agro-ecological zones of the Gandaki River Basin (GRB) for rainfall trends of four seasons (pre-monsoon, monsoon, post-monsoon and winter) from 1981 to 2012.
OPEN ACCESSClimate 2015, 3
211The non-parametric Mann-Kendall and Sen's methods were used to determine the trends. Decadal anomalies relative to the long-term average were analyzed using the APHRODITE precipitation product. Trends in number of rainy days and timing of the monsoon were also analyzed. We found that the post-monsoon, pre-monsoon and winter rainfalls are decreasing significantly in most of the zones but monsoon rainfall is increasing throughout the basin. In the hill region, the annual rainfall is increasing but the rainy days do not show any trend. There is a tendency toward later departure of monsoon from Nepal, indicating an increase in its duration. These seasonally and topographically variable trends may have significant impacts for the agriculture and livestock smallholders that form the majority of the population in the GRB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.