We address an actively discussed problem in signal processing, recognizing patterns from spatial data in motion. In particular, we suggest a neural network architecture to recognize motion patterns from 4D point clouds. We demonstrate the feasibility of our approach with point cloud datasets of hand gestures. The architecture, PointGest, directly feeds on unprocessed timelines of point cloud data without any need for voxelization or projection. The model is resilient to noise in the input point cloud through abstraction to lower-density representations, especially for regions of high density. We evaluate the architecture on a benchmark dataset with ten gestures. PointGest achieves an accuracy of 98.8%, outperforming five state-of-the-art point cloud classification models.
The present study investigates the use of 1-dimensional (1-D) and 2-dimensional (2-D) spectral feature representations in voice pathology detection with several classical machine learning (ML) and recent deep learning (DL) classifiers. Four popularly used spectral feature representations (static mel-frequency cepstral coefficients (MFCCs), dynamic MFCCs, spectrogram and mel-spectrogram) are derived in both the 1-D and 2-D form from voice signals. Three widely used ML classifiers (support vector machine (SVM), random forest (RF) and Adaboost) and three DL classifiers (deep neural network (DNN), long shortterm memory (LSTM) network, and convolutional neural network (CNN)) are used with the 1-D feature representations. In addition, CNN classifiers are built using the 2-D feature representations. The popularly used HUPA database is considered in the pathology detection experiments. Experimental results revealed that using the CNN classifier with the 2-D feature representations yielded better accuracy compared to using the ML and DL classifiers with the 1-D feature representations. The best performance was achieved using the 2-D CNN classifier based on dynamic MFCCs that showed a detection accuracy of 81%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.