Falling or tripping among elderly people living on their own is recognized as a major public health worry that can even lead to death. Fall detection systems that alert caregivers, family members or neighbours can potentially save lives. In the past decade, an extensive amount of research has been carried out to develop fall detection systems based on a range of different detection approaches, i.e, wearable and non-wearable sensing and detection technologies. In this paper, we consider an emerging non-wearable fall detection approach based on WiFi Channel State Information (CSI). Previous CSI based fall detection solutions have considered only time domain approaches. Here, we take an altogether different direction, time-frequency analysis as used in radar fall detection. We use the conventional Short-Time Fourier Transform (STFT) to extract time-frequency features and a sequential forward selection algorithm to single out features that are resilient to environment changes while maintaining a higher fall detection rate. When our system is pre-trained, it has a 93% accuracy and compared to RTFall and CARM, this is a 12% and 15% improvement respectively. When the environment changes, our system still has an average accuracy close to 80% which is more than a 20% to 30% and 5% to 15% improvement respectively.
In advanced driver assistance systems to conditional automation systems, monitoring of driver state is vital for predicting the driver's capacity to supervise or maneuver the vehicle in cases of unexpected road events and to facilitate better in-car services. The paper presents a technique that exploits millimeter-wave Doppler radar for 3D head tracking. Identifying the bistatic and monostatic geometry for antennas to detect rotational vs. translational movements, the authors propose the biscattering angle for computing a distinctive feature set to isolate dynamic movements via class memberships. Through data reduction and joint time-frequency analysis, movement boundaries are marked for creation of a simplified, uncorrelated, and highly separable feature set. The authors report movement-prediction accuracy of 92%. This non-invasive and simplified head tracking has the potential to enhance monitoring of driver state in autonomous vehicles and aid intelligent car assistants in guaranteeing seamless and safe journeys.
We introduce Pantomime, a novel mid-air gesture recognition system exploiting spatio-temporal properties of millimeter-wave radio frequency (RF) signals. Pantomime is positioned in a unique region of the RF landscape: mid-resolution mid-range high-frequency sensing, which makes it ideal for motion gesture interaction. We configure a commercial frequency-modulated continuous-wave radar device to promote spatial information over the temporal resolution by means of sparse 3D point clouds and contribute a deep learning architecture that directly consumes the point cloud, enabling real-time performance with low computational demands. Pantomime achieves 95% accuracy and 99% AUC in a challenging set of 21 gestures articulated by 41 participants in two indoor environments, outperforming four state-of-the-art 3D point cloud recognizers. We further analyze the effect of the environment in 5 different indoor environments, the effect of articulation speed, angle, and the distance of the person up to 5m. We have publicly made available the collected mmWave gesture dataset consisting of nearly 22,000 gesture instances along with our radar sensor configuration, trained models, and source code for reproducibility. We conclude that pantomime is resilient to various input conditions and that it may enable novel applications in industrial, vehicular, and smart home scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.