In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Carbon nanomaterials (CNMs) have received tremendous interest in the area of nanotechnology due to their unique properties and flexible dimensional structure. CNMs have excellent electrical, thermal, and optical properties that make them promising materials for drug delivery, bioimaging, biosensing, and tissue engineering applications. Currently, there are many types of CNMs, such as quantum dots, nanotubes, nanosheets, and nanoribbons; and there are many others in development that promise exciting applications in the future. The surface functionalization of CNMs modifies their chemical and physical properties, which enhances their drug loading/release capacity, their ability to target drug delivery to specific sites, and their dispersibility and suitability in biological systems. Thus, CNMs have been effectively used in different biomedical systems. This review explores the unique physical, chemical, and biological properties that allow CNMs to improve on the state of the art materials currently used in different biomedical applications. The discussion also embraces the emerging biomedical applications of CNMs, including targeted drug delivery, medical implants, tissue engineering, wound healing, biosensing, bioimaging, vaccination, and photodynamic therapy.
Nanomaterials are materials with one or more nanoscale dimensions (internal or external) (i.e., 1 to 100 nm). The nanomaterial shape, size, porosity, surface chemistry, and composition are controlled at the nanoscale, and this offers interesting properties compared with bulk materials. This review describes how nanomaterials are classified, their fabrication, functionalization techniques, and growth-controlled mechanisms. First, the history of nanomaterials is summarized and then the different classification methods, based on their dimensionality (0–3D), composition (carbon, inorganic, organic, and hybrids), origin (natural, incidental, engineered, bioinspired), crystal phase (single phase, multiphase), and dispersion state (dispersed or aggregated), are presented. Then, the synthesis methods are discussed and classified in function of the starting material (bottom-up and top-down), reaction phase (gas, plasma, liquid, and solid), and nature of the dispersing forces (mechanical, physical, chemical, physicochemical, and biological). Finally, the challenges in synthesizing nanomaterials for research and commercial use are highlighted.
The purpose of this study was to synthesize composite nanoparticles (NPs) based on poly(d,l-lactic-co-glycolic acid) (PLGA) and chitosan (CS) and evaluate their suitability for the delivery of protein-based therapeutic molecules. Composite NPs possess a unique property which is not exhibited by any other polymer. Unlike other polymers, only the composite NPs lead to improved transfection efficiency and sustained release of protein. The composite NP were prepared by grafting CS on the surface of PLGA NPs through EDC-NHS coupling reaction. The size of bovine serum albumin (BSA)-loaded PLGA NPs and BSA-loaded PLGA–CS composite NPs was 288 ± 3 and 363 ± 4 nm, respectively. The zeta potential of PLGA NPs is −18 ± 0.23, and that of composite particles is 19 ± 0.40, thus confirming the successful addition of CS on the surface of PLGA NPs. Composite NPs were characterized using dynamic light scattering, scanning/transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, release profile, and gel electrophoresis. The encapsulation efficiency of PLGA NPs was 88%. These composite NPs were easily uptaken by the A549 cell line with no or minimal cytotoxicity. The present study emphasizes that the composite NPs are suitable for delivery of BSA into the cells with no cytotoxicity or very little cytotoxicity, while maintaining the integrity of the encapsulated BSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.