The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro. Fulllength ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/ retention of iGluRs by regulating ICA69 levels.
BackgroundCoats plus syndrome is an autosomal recessive, pleiotropic, multisystem disorder characterized by retinal telangiectasia and exudates, intracranial calcification with leukoencephalopathy and brain cysts, osteopenia with predisposition to fractures, bone marrow suppression, gastrointestinal bleeding and portal hypertension. It is caused by compound heterozygous mutations in the CTC1 gene.Case presentationWe encountered a case of an eight-year old boy from an Indian family with manifestations of Coats plus syndrome along with an unusual occurrence of dextrocardia and situs inversus. Targeted resequencing of the CTC1 gene as well as whole exome sequencing (WES) were conducted in this family to identify the causal variations. The identified candidate variations were screened in ethnicity matched healthy controls. The effect of CTC1 variation on telomere length was assessed using Southern blot. A novel homozygous missense mutation c.1451A > C (p.H484P) in exon 9 of the CTC1 gene and a rare 3′UTR known dbSNP variation (c.*556 T > C) in HES7 were identified as the plausible candidates associated with this complex phenotype of Coats plus and dextrocardia. This CTC1 variation was absent in the controls and we also observed a reduced telomere length in the affected individual’s DNA, suggesting its likely pathogenic nature. The reported p.H484P mutation is located in the N-terminal 700 amino acid regionthat is important for the binding of CTC1 to ssDNA through its two OB domains. WES data also showed a rare homozygous missense variation in the TEK gene in the affected individual. Both HES7 and TEK are targets of the Notch signaling pathway.ConclusionsThis is the first report of a genetically confirmed case of Coats plus syndrome from India. By means of WES, the genetic variations in this family with unique and rare complex phenotype could be traced effectively. We speculate the important role of Notch signaling in this complex phenotypic presentation of Coats plus syndrome and dextrocardia. The present finding will be useful for genetic diagnosis and carrier detection in the family and for other patients with similar disease manifestations.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-015-0151-8) contains supplementary material, which is available to authorized users.
Autosomal dominant cerebellar ataxia type I is a heterogeneous group of spinocerebellar ataxias with variable neurologic presentations, with age of onset varying from infancy to adulthood. Autosomal dominant cerebellar ataxia type I is composed mainly of 3 prevalent spinocerebellar ataxia types with different pathogenic loci, specifically spinocerebellar ataxia 1 (6p24-p23), spinocerebellar ataxia 2 (12q24.1), and spinocerebellar ataxia 3 (14q32.1). The shared pathogenic mutational event is the expansion of the CAG repeat that results in polyglutamine extended stretches in the encoded proteins. CAG repeat disorders generally show the phenomenon of anticipation, which is more often associated with paternal transmission. In this report, we describe a patient with infantile-onset spinocerebellar ataxia type 2 (~320 CAG repeat) who inherited the disease from his father (47 CAG repeats). We have summarized the clinical, neuroimaging, electroencephalographic (EEG), and molecular data of previous cases and attempt to highlight the most consistent findings. Our intent is to help treating clinicians to suspect this disorder and to offer timely genetic counseling for a currently potentially untreatable disorder.
Compromised endocytosis in neurons leads to synapse overgrowth and altered organization of synaptic proteins. However, the molecular players and the signaling pathways which regulate the process remains poorly understood. Here we show that σ2-adaptin, one of the subunits of the AP2-complex, genetically interacts with BMP type I receptor, Thickveins (Tkv), and Daughter against decapentaplegic (Dad), two of the components of BMP signaling. We found that mutations in σ2-adaptin lead to an accumulation of Tkv receptors at the NMJ and results in a significant reduction in Tkv-positive early endosomes in the presynaptic terminals. Interestingly, the level of small GTPase Rab11 was significantly reduced in the σ2-adaptin mutant synapses. Consistent with the role of σ2-adaptin and Rab11 in the regulation of the same signaling pathway, a mutation in Rab11 or overexpression of a GDP-locked form of Rab11 (Rab11S25N) phenocopies the morphological and signaling defects of the σ2-adaptin mutants. Finally, we demonstrate that σ2-adaptin mutants show an accumulation of large vesicles and massive membranous structures, akin to endosomes at the synapse. Thus, we propose a model in which AP2 regulates Tkv internalization and recycling through a process that requires Rab11 activity to control the synaptic growth.
Compromised endocytosis in neurons leads to synapse overgrowth and altered organization of synaptic proteins. However, the molecular players and the signaling pathways which regulate the process remain poorly understood. Here, we show that σ2-adaptin, one of the subunits of the AP2-complex, genetically interacts with Mad, Medea and Dad (components of BMP signaling) to control neuromuscular junction (NMJ) growth in Drosophila. Ultrastructural analysis of σ2adaptin mutants show an accumulation of large vesicles and membranous structures akin to endosomes at the synapse. We found that mutations in σ2-adaptin lead to an accumulation of Tkv receptors at the presynaptic membrane. Interestingly, the level of small GTPase Rab11 was significantly reduced in the σ2-adaptin mutant synapses.However, expression of Rab11 does not restore the synaptic defects of σ2-adaptin mutations. We propose a model in which AP2 regulates Tkv internalization and endosomal recycling to control synaptic growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.