The rocks of the Indian subcontinent are last seen south of the Ganges before they plunge beneath the Himalaya and the Tibetan plateau. They are next glimpsed in seismic reflection profiles deep beneath southern Tibet, yet the surface seen there has been modified by processes within the Himalaya that have consumed parts of the upper Indian crust and converted them into Himalayan rocks. The geometry of the partly dismantled Indian plate as it passes through the Himalayan process zone has hitherto eluded imaging. Here we report seismic images both of the decollement at the base of the Himalaya and of the Moho (the boundary between crust and mantle) at the base of the Indian crust. A significant finding is that strong seismic anisotropy develops above the decollement in response to shear processes that are taken up as slip in great earthquakes at shallower depths. North of the Himalaya, the lower Indian crust is characterized by a high-velocity region consistent with the formation of eclogite, a high-density material whose presence affects the dynamics of the Tibetan plateau.
Earthquakes beneath the Himalayan collision zone occur at depths between near surface and around 100 km below sea level. After relocating earthquakes with two one‐dimensional (1‐D) velocity models, we found a clear bimodal depth distribution for earthquakes in the Himalayas of eastern Nepal and the southern Tibetan Plateau and evidence that some earthquakes originate at upper mantle depths. Seismicity in Nepal shows an accumulation of earthquakes along the front of the Himalayan arc, with a seismic gap between longitudes 87.3°E and 87.7°E. Although upper crustal seismicity along the topographic front of the High Himalaya is consistent with a region of high strain accumulation associated with convergence on the Main Himalayan thrust fault, microearthquakes do not necessarily occur on this fault. Instead, they concentrate in the hanging wall. Seismic activity in the sub‐Himalaya and the Terai Plains is almost exclusively limited to the vicinity of the location of the magnitude 6.5 20 August 1988 Udayapur earthquake, with most of the earthquakes in the lower crust and the upper mantle. Clusters of earthquakes in the Lesser and High Himalayas and south Tibet (Tethyan Himalayas) mark very well defined zones of seismicity at depths between 50 and 100 km, confirming the presence of earthquakes in the upper mantle in the region of continental collision. The occurrence of earthquakes at sub‐Moho depths favors the idea that the continental upper mantle deforms by brittle processes.
Abstract. The Departement of Mines and Geology has been monitoring the seismicity of the Central Himalayas of Nepal since 1985. Intense microseismicity and frequent medium-size earthquakes (mL<4) tend to cluster beneath the topographic front of the Higher Himalaya. This 10-20km deep seismicity also correlates with a zone of localized uplift that has been evidenced from geodetic data. Both microseismic and geodetic data indicate strain accumulation on a mid-crustal ramp that had been previously inferred from geological and geophysical evidence.This ramp connects a flat decollement under the Lesser and SubHimalaya with a deeper decollement under the Higher Himalaya, and probably acts as a geometric asperity where strain and stress build up during the interseismic period. The large Himalayan earthquakes could nucleate there and probably activate the whole flat-and-ramp system up to the blind thrusts of the Sub-Himalaya.
[1] The seismic cycle on a major fault involves long periods of elastic strain and stress accumulation, driven by aseismic ductile deformation at depth, ultimately released by sudden fault slip events. Coseismic slip distributions are generally heterogeneous with most of the energy being released in the rupture of asperities. Since, on the long term, the fault's walls generally do not accumulate any significant permanent deformation, interseismic deformation might be heterogeneous, revealing zones of focused stress buildup. The pattern of current deformation along the Himalayan arc, which is known to produce recurring devastating earthquakes, and where several seismic gaps have long been recognized, might accordingly show significant lateral variations, providing a possible explanation for the uneven microseismic activity along the Himalayan arc. By contrast, the geodetic measurements show a rather uniform pattern of interseismic strain, oriented consistently with long-term geological deformation, as indicated from stretching lineation. We show that the geodetic data and seismicity distribution are reconciled from a model in which microseismicity is interpreted as driven by stress buildup increase in the interseismic period. The uneven seismicity pattern is shown to reflect the impact of the topography on the stress field, indicating low deviatoric stresses (<35 MPa) and a low friction (<0.3) on the Main Himalayan Thrust. Arc-normal thrusting along the Himalayan front and east-west extension in southern Tibet are quantitatively reconciled by the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.