Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.
We demonstrate a first-principles method to compute all factors entering the vacancy-mediated self-diffusion coefficient. Using density functional theory calculations of fcc Al as an illustrative case, we determine the energetic and entropic contributions to vacancy formation and atomic migration. These results yield a quantitative description of the migration energy and vibrational prefactor via transition state theory. The calculated diffusion parameters and coefficients show remarkably good agreement with experiments. We provide a simple physical picture for the positive entropic contributions.
As gold clusters increase in size, the preferred structure changes from planar to three-dimensional and, for anionic clusters, Au(n)-, the two-dimensional(2D)-->three-dimensional (3D) transition is found experimentally to occur between n=11 and n=12. Most density functionals predict that planar structures are preferred up to higher n than is observed experimentally, an exception being the local spin density approximation. Here we test four relatively new functionals for this feature, in particular, M05, M06-L, M06, and SOGGA. We find that M06-L, M06, and SOGGA all predict the 2D-->3D transition at the correct value of n. Since the M06-L and M06 functionals have previously been shown to be reasonably accurate for transition metal bond energies, main group atomization energies, barrier heights, and noncovalent interaction energies, and, since they are here shown to perform well for the s-d excitation energy and ionization potential of Au atoms and for the size of Au(n)- clusters at which the 2D-->3D transition occurs, they are recommended for simulating processes catalyzed by gold clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.