Over the last few decades, hot melt extrusion (HME) has emerged as a successful technology for a broad spectrum of applications in the pharmaceutical industry. As indicated by multiple publications and patents, HME is mainly used for the enhancement of solubility and bioavailability of poorly soluble drugs. This review is focused on the recent reports on the solubility enhancement via HME and provides an update for the manufacturing/scaling up aspects of melt extrusion. In addition, drug characterization methods and dissolution studies are discussed. The application of process analytical technology (PAT) tools and use of HME as a continuous manufacturing process may shorten the drug development process; as a result, the latter is becoming the most widely utilized technique in the pharmaceutical industry. The advantages, disadvantages, and practical applications of various PAT tools such as near and mid-infrared, ultraviolet/visible, fluorescence, and Raman spectroscopies are summarized, and the characteristics of other techniques are briefly discussed. Overall, this review also provides an outline for the currently marketed products and analyzes the strengths, weaknesses, opportunities and threats of HME application in the pharmaceutical industry.
The aim of the present work was to produce 3D-printed oral dosage forms with a sufficient drug dose displaying various release profiles. Hot-melt extrusion was utilized to produce drug-loaded feedstock material that was subsequently 3D-printed into 6, 8, and 10 × 2.5 mm tablets with 15% and 90% infill levels. The prepared formulations contained 30% (w/w) isoniazid in combination with one or multiple pharmaceutical polymers possessing suitable properties for oral drug delivery. Thirteen formulations were successfully hot-melt extruded of which eight had properties suitable for fused deposition modeling 3D printing. Formulations containing HPC were found to be superior regarding printability in this study. Filaments with a breaking distance below 1.5 mm were observed to be too brittle to be fed into the printer. In addition, filaments with high moisture uptake at high relative humidity generally failed to be printable. Different release profiles for the 3D-printed tablets were obtained as a result of using different polymers in the printed formulations. For 8 mm tablets printed with 90% infill, 80% isoniazid release was observed between 40 and 852 min. Drug release characteristics could further be altered by changing the infill or the size of the printed tablets allowing personalization of the tablets. This study presents novel formulations containing isoniazid for prevention of latent tuberculosis and investigates 3D printing technology for personalized production of oral solid dosage forms enabling adjustable dose and drug release properties.
Floating dosage forms are an important formulation strategy for drugs with a narrow absorption window and low intestinal solubility, and for localized gastric treatment. Novel floating pellets were prepared using the hot-melt extrusion (HME) technology. Uniformly foamed strands were created by liquid injection pumping and screw configuration modification. The ammonio methacrylate copolymer (Eudragit® RSPO) foaming structure was formed by a liquid-vapor phase transition inside the strand upon die exiting resulting from the sudden decrease in external pressure, vaporizing the liquid ethanol and vacating the extruded material. This generated uniform vacuous regions in the extrudate. The pellets’ internal structure was investigated using scanning electron microscopy (SEM). The formulation constituents’ and processing parameters’ effects on the drug release profiles, floating force, and the pellets’ micromeritic properties were evaluated by design of experiments: all formulations showed zero lag time and excellent floating strength, indicating immediate-floating pellet formation. The pellets’ drug release profiles were controlled by multiple independent variables at different time points (≤24 h). Drug loading significantly affected drug release within the first hour; the hydroxypropyl methylcellulose (HPMC) content thereafter. Understanding the variables’ effects on the formulations allows for the tailoring of this delivery system to obtain various drug release profiles.
The main objective of this novel study was to develop chlorpheniramine maleate orally disintegrating films (ODF) using hot-melt extrusion technology and evaluate the characteristics of the formulation using in vitro and in vivo methods. Modified starch with glycerol was used as a polymer matrix for melt extrusion. Sweetening and saliva-simulating agents were incorporated to improve palatability and lower the disintegration time of film formulations. A standard screw configuration was applied, and the last zone of the barrel was opened to discharge water vapors, which helped to manufacture non-sticky, clear, and uniform films. The film formulations demonstrated rapid disintegration times (6–11 s) and more than 95% dissolution in 5 min. In addition, the films had characteristic mechanical properties that were helpful in handling and storage. An animal model was employed to determine the taste masking of melt-extruded films. The lead film formulation was subjected to a human panel for evaluation of extent of taste masking and disintegration.
The primary aim of this research was to produce successfully taste masked formulations of Sildenafil Citrate (SC) using hot-melt extrusion (HME) technology. Multiple screw configurations and polymeric carriers were evaluated for their effects on taste masking efficiency, which was assessed by both E-tongue analysis and in vitro dissolution in simulated salivary fluid (SSF, pH 6.8 artificial saliva). The screw configurations were further assessed for their effects on the morphology of the API using PXRD, FT-IR and mid-infrared chemical imaging. It was determined that the screw configuration had a profound effect on the taste masking efficiency of the formulations as a result of altering the physical state of the API. Selected extruded formulations using ethylcellulose (EC) with a pore former were further formulated into orally disintegrating tablets (ODTs), which were optimized by varying the grade and percentage of the superdisintegrant used. An optimized disintegration time of approximately 8 seconds was achieved. The final ODT formulation exhibited excellent taste masking properties with over 85% drug release in gastric media as well as physical tablet properties. Interestingly, friability, which tends to be a common concern when formulating ODTs, was well within the acceptable limits (<1%) for common tablets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.