Precise control over doping of photocatalysts is required to modulate their photocatalytic activity in visible light‐driven reactions. Here, a single precursor‐employing bottom‐up approach is developed to produce different heteroatom‐doped graphene quantum dots (GQDs) with unique photocatalytic activities. The solvothermal reaction of a norepinephrine precursor with redox active and condensable moieties effectively produces both nitrogen/sulfur codoped GQDs (NS‐GQDs) and nitrogen‐doped GQDs (N‐GQDs) by simply varying solvents (from dimethyl sulfoxide to water) under microwave irradiation. As‐prepared NS‐GQDs and N‐GQDs show similar lateral sizes (3–4 nm) and heights (1–2 nm), but they include different dopant types and doping constitution and content, which lead to changes in photocatalytic activity in aerobic oxidative coupling reactions of various amines. NS‐GQDs exhibit much higher photocatalytic activity in reactions under visible light than N‐GQDs and oxygen‐doped GQDs (O‐GQDs). The mechanism responsible for the outstanding photocatalytic activity of NS‐GQDs in visible light‐driven oxidative coupling reactions of amines is also fully investigated.
Modulating the dimensions and phases of transition metal dichalcogenides is of great interest to enhance their intrinsic properties or to create new physicochemical properties. Herein, we report an effective approach to synthesize 2H-WS quantum dots (QDs) via the dimension and phase engineering of 1T-WS nanosheets. The solvothermal reaction of chemically exfoliated 1T-WS nanosheets in N-methyl-2-pyrrolidone (NMP) under an N atmosphere induced their chopping and phase transition at lower temperature to produce 2H-WS QDs with a high quantum yield (5.5 ± 0.3%). Interestingly, this chopping and phase transition process showed strong dependency on solvent; WS QDs were not produced in other solvents such as 1,4-dioxane and dimethyl sulfoxide. Mechanistic investigations suggested that NMP radicals played a crucial role in the effective production of 2H-WS QDs from 1T-WS nanosheets. WS QDs were successfully applied for the selective, sensitive, and rapid detection of dopamine in human serum (4 min, as low as 23.8 nM). The intense fluorescence of WS QDs was selectively quenched upon the addition of dopamine and Au ions due to fluorescence resonance energy transfer between WS QDs and the quickly formed Au nanoparticles. This new sensing principle enabled us to discriminate dopamine from dopamine-derivative neurotransmitters including epinephrine and norepinephrine, as well as other interference compounds.
The ability to control the dimensions and properties of nanomaterials is fundamental to the creation of new functions and improvement of their performances in the applications of interest. Herein, we report a strategy based on glucan multivalent interactions for the simultaneous exfoliation and functionalization of two-dimensional transition metal dichalcogenides (TMDs) in an aqueous solution. The multivalent hydrogen bonding of dextran with bulk TMDs (WS2, WSe2, and MoSe2) in liquid exfoliation effectively produces TMD monolayers with binding multivalency for pathogenic bacteria. Density functional theory simulation reveals that the multivalent hydrogen bonding between dextran and TMD monolayers is very strong and thermodynamically favored (ΔEb = −0.52 eV). The resulting dextran/TMD hybrids (dex-TMDs) exhibit a stronger affinity (Kd = 11 nM) to Escherichia coli O157:H7 (E. coli) than E. coli-specific antibodies and aptamers. The dex-TMDs can effectively detect a single copy of E. coli based on their Raman signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.