Meta-analysis based techniques are emerging as powerful, robust tools for developing models of connectivity in functional neuroimaging. Here, we apply meta-analytic connectivity modeling to the human caudate to 1) develop a model of functional connectivity, 2) determine if meta-analytic methods are sufficiently sensitive to detect behavioral domain specificity within region-specific functional connectivity networks, and 3) compare meta-analytic driven segmentation to structural connectivity parcellation using diffusion tensor imaging. Results demonstrate strong coherence between meta-analytic and data-driven methods. Specifically, we found that behavioral filtering resulted in cognition and emotion related structures and networks primarily localized to the head of the caudate nucleus, while perceptual and action specific regions localized to the body of the caudate, consistent with early models of nonhuman primate histological studies and postmortem studies in humans. Diffusion tensor imaging (DTI) revealed support for meta-analytic connectivity modeling's (MACM) utility in identifying both direct and indirect connectivity. Our results provide further validation of meta-analytic connectivity modeling, while also highlighting an additional potential, namely the extraction of behavioral domain specific functional connectivity.
Significant differences in the rates and patterns of discharge of GPe and GPi neurons exist in DYS and PD. The findings are discussed with reference to the current model of the functional connections of the basal ganglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.