With the increasing number of mobile devices, there has been continuous research on generating optimized Language Models (LMs) for soft keyboard. In spite of advances in this domain, building a single LM for low-end feature phones as well as high-end smartphones is still a pressing need. Hence, we propose a novel technique, Optimized N-gram (Op-Ngram), an end-to-end N-gram pipeline that utilises mobile resources efficiently for faster Word Completion (WC) and Next Word Prediction (NWP). Op-Ngram applies Stupid Backoff [1] and pruning strategies to generate a light-weight model. The LM loading time on mobile is linear with respect to model size. We observed that Op-Ngram gives 37% improvement in Language Model (LM)-ROM size, 76% in LM-RAM size, 88% in loading time and 89% in average suggestion time as compared to SORTED array variant of BerkeleyLM [2]. Moreover, our method shows significant performance improvement over KenLM[3] as well.
In this paper we compared a high speed carry skip adders by considering parameters such as area, LUT'S, delay, power. When compared to conventional CSKA and other adders. Here in this project in first stage CSKA designed by using multiplexer as skip logic so by using this speed gets increased by skipping of carry. so here area gets increased so to reduce area another hybrid variable latency carry skip adder(Brent-kung adder) is designed .here power utilization also gets decreased, speed gets increased, but some delay is produced here to overcome that we followed a another method called Kogge-Stone adder here so it reduces the critical path delay. In Kogge-stone adder power is highly consumed due to more no of wiring connections so another adder was designed to reduce power consumption which is Sklansky adder which reduces power Consumption. This is done in Xilinx ISE 14.7 and power was analyzed using Xilinx power analyzer.
Code Division Multiple Access (CDMA) is a spread spectrum technique that uses neither frequency channels nor time slots. With CDMA, the narrow band message (typically digitized voice data) is multiplied by a large bandwidth signal that is a pseudo random noise code (PN code). All users in a CDMA system use the same frequency band and transmit simultaneously. The transmitted signal is recovered by correlating the received signal with the PN code used by the transmitter. The DS -CDMA is expected to be the major medium access technology in the future mobile systems owing to its potential capacity enhancement and the robustness against noise. The CDMA is uniquely featured by its spectrum-spreading randomization process employing a pseudo-noise (PN) sequence, thus is often called the spread spectrum multiple access (SSMA). As different CDMA users take different PN sequences, each CDMA receiver can discriminate and detect its own signal, by regarding the signals transmitted by other users as noise-like interferences. In this project direct sequence principle based CDMA transmitter and receiver is implemented in VHDL for FPGA. Modelsim 6.2(MXE) tool will be used for functional and logic verification at each block. The Xilinx synthesis technology (XST) of Xilinx ISE 9.2i tool will be used for synthesis of transmitter and receiver on FPGA Spartan 3E.
Since the boom of smart phones and location services, spatio-temporal data (i.e., user locations with timestamps) have become increasingly essential in many real-life applications. To ensure these data are faithfully extracted from the underlying loc tracking hardware and not altered by any malicious party or the user himself/herself, integrity assurance schemes such as digital signatures or message authentication codes (MAC) must be adopted. However, these conventional schemes disclose to the verifier the complete plaintext location and thus jeopardize users' privacy. Propose an integrity assurance scheme with minimum location disclosure. That is, the granule of the disclosed location is just small enough to prove the user is/has been to a certain place, and the verifier cannot learn anything beyond it. To this end, a new MAC scheme called Prefix-verifiable MAC (PMAC), based on which we design indexes and protocols to authenticate both spatial and spatio predicates. Security analysis and experimental results show our scheme is both secure and efficient for practical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.