The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia, oxidative stress and the accumulation of advanced glycation endproducts that compromise collagen properties, increase marrow adiposity, release inflammatory factors and adipokines from visceral fat, and potentially alter the function of osteocytes. Additional factors including treatment-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus.
Highlights
Use of a combination of vitamin D, magnesium, and vitamin B
12
(DMB) in patients with coronavirus disease (COVID-19) was studied.
Fewer patients ≥50 y of age with COVID-19 on DMB suffered clinical deterioration.
Further studies are warranted to ascertain the full benefit of DMB in patients with COVID-19.
Guidance is provided in an international setting on the assessment and specific treatment of postmenopausal women at low, high and very high risk of fragility fractures. Introduction The International Osteoporosis Foundation and European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis published guidance for the diagnosis and management of osteoporosis in 2019. This manuscript seeks to apply this in an international setting, taking additional account of further categorisation of increased risk of fracture, which may inform choice of therapeutic approach. Methods Clinical perspective and updated literature search. Results The following areas are reviewed: categorisation of fracture risk and general pharmacological management of osteoporosis. Conclusions A platform is provided on which specific guidelines can be developed for national use to characterise fracture risk and direct interventions.
Fragility fractures are increasingly recognized as a complication of both type 1 and type 2 diabetes, with fracture risk that increases with disease duration and poor glycemic control. Yet the identification and management of fracture risk in these patients remains challenging. This review explores the clinical characteristics of bone fragility in adults with diabetes and highlights recent studies that have evaluated bone mineral density (BMD), bone microstructure and material properties, biochemical markers, and fracture prediction algorithms (i.e., FRAX) in these patients. It further reviews the impact of diabetes drugs on bone as well as the efficacy of osteoporosis treatments in this population. We finally propose an algorithm for the identification and management of diabetic patients at increased fracture risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.