Time series forecasting using historical data is significantly important nowadays. Many fields such as finance, industries, healthcare, and meteorology use it. Profit analysis using financial data is crucial for any online or offline businesses and companies. It helps understand the sales and the profits and losses made and predict values for the future. For this effective analysis, the statistical methods-Autoregressive Integrated Moving Average (ARIMA) and Seasonal ARIMA models (SARIMA), and deep learning method-Long Short-Term Memory (LSTM) Neural Network model in time series forecasting have been chosen. It has been converted into a stationary dataset for ARIMA, not for SARIMA and LSTM. The fitted models have been built and used to predict profit on test data. After obtaining good accuracies of 93.84% (ARIMA), 94.378% (SARIMA) and 97.01% (LSTM) approximately, forecasts for the next 5 years have been done. Results show that LSTM surpasses both the statistical models in constructing the best model.
<span lang="EN-US">Routing Protocol for Low Power and Lossy Networks based networks consists of large number of tiny sensor nodes with limited resources. These nodes are directly connected to the Internet through the border router. Hence these nodes are susceptible to different types of attacks. The possible attacks are rank attack, selective forwarding, worm hole and Denial of service attack. These attacks can be effectively identified by intrusion detection system model. The paper focuses on identification of multiple intrusions by considering the network size as 10, 40 and 100 nodes and adding 10%, 20% and 30% of malicious nodes to the considered network. Experiments are simulated using Cooja simulator on Contiki operating system. Behavior of the network is observed based on the percentage of inconsistency achieved, energy consumption, accuracy and false positive rate. Experimental results show that multiple intrusions can be detected effectively by machine learning techniques.</span>
Wireless sensor network has large number of low-cost tiny nodes with sensing capability. These provide low cost solutions to many real world problems such as such as defence, Internet of things, healthcare, environment monitoring and so on. The sensor nodes of these networks are placed in vulnerable environment. Hence, the security of these networks is very important. Intrusion Detection System (IDS) plays an important role in providing a security to such type of networks. The sensor nodes of the network have limited power and, traditional security mechanisms such as key-management, encryption decryption and authentication techniques cannot be installed on the nodes. Hence, there is a need of special security mechanism to handle the intrusions. In this paper, intrusion detection system is designed and implemented using game theory and machine learning to identify multiple attacks. Game theory is designed and used to apply the IDS optimally in WSN. The game model is designed by defining the players and the corresponding strategies. Quantal Response Equilibrium (QRE) concept of game theory is used to select the strategies in optimal way for the intrusion’s detection. Further, these intrusions are classified as denial of service attack, rank attack or selective forwarding attacks using supervised machine learning technique based on different parameters and rules. Results show that all the attacks are detected with good detection rate and the proposed approach provides optimal usage of IDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.