Scale formation presents an enormous cost to the global economy. Classical nucleation theory dictates that to reduce the heterogeneous nucleation of scale, the surface should have low surface energy and be as smooth as possible. Past approaches have focused on lowering surface energy via the use of hydrophobic coatings and have created atomically smooth interfaces to eliminate nucleation sites, or both, via the infusion of lowsurface-energy lubricants into rough superhydrophobic substrates. Although lubricant-based surfaces are promising candidates for antiscaling, lubricant drainage inhibits their utilization. Here, we develop methodologies to deposit slippery omniphobic covalently attached liquids (SOCAL) on arbitrary substrates. Similar to lubricant-based surfaces, SOCAL has ultralow roughness and surface energy, enabling low nucleation rates and eliminating the need to replenish the lubricant. To enable SOCAL coating on metals, we investigated the surface chemistry required to ensure high-quality functionalization as measured by ultralow contact angle hysteresis (<3°). Using a multilayer deposition approach, we first electrophoretically deposit (EPD) silicon dioxide (SiO 2 ) as an intermediate layer between the metallic substrate and SOCAL. The necessity of EPD SiO 2 is to smooth (<10 nm roughness) as well as to enable the proper surface chemistry for SOCAL bonding. To characterize antiscaling performance, we utilized calcium sulfate (CaSO 4 ) scale tests, showing a 20× reduction in scale deposition rate than untreated metallic substrates. Descaling tests revealed that SOCAL dramatically decreases scale adhesion, resulting in rapid removal of scale buildup. Our work not only demonstrates a robust methodology for depositing antiscaling SOCAL coatings on metals but also develops design guidelines for the creation of antifouling coatings for alternate applications such as biofouling and high-temperature coking.
Non-shivering thermogenesis through mitochondrial proton uncoupling is one of the dominant thermoregulatory mechanisms crucial for normal cellular functions. The metabolic pathway for intracellular temperature rise has widely been considered as steady-state substrate oxidation. Here, we show that a transient proton motive force (pmf) dissipation is more dominant than steady-state substrate oxidation in stimulated thermogenesis. Using transient intracellular thermometry during stimulated proton uncoupling in neurons of Aplysia californica , we observe temperature spikes of ~7.5 K that decay over two time scales: a rapid decay of ~4.8 K over ~1 s followed by a slower decay over ~17 s. The rapid decay correlates well in time with transient electrical heating from proton transport across the mitochondrial inner membrane. Beyond ~33 s, we do not observe any heating from intracellular sources, including substrate oxidation and pmf dissipation. Our measurements demonstrate the utility of transient thermometry in better understanding the thermochemistry of mitochondrial metabolism.
Measuring temperatures within a biological cell requires a sensor with small thermal mass and microscale or smaller size that is electrically and chemically inert to the cell's environment, and is thermally isolated from the surroundings. We investigate how such requirements can be satisfied in a microscale thermocouple probe that is fabricated using the techniques of silicon-based microelectromechanical systems. Previous reports of invasive probes lacked either the required spatial resolution (< 5 µm) or response time (< 4 ms). Here, we report 1 µm thick silicon nitride supported probes with a 5 µm tip that has a response time of 32 µs. These figures enable future transient thermometry of cell organelles. To reduce calibration errors, we devise an on-chip calibration in a vacuum cryostat. We find that the accuracy of our measurements is ±54 mK for 300 ± 10 K. This work paves the way toward future thermometry at a subcellular level.
The specularity of phonons at crystal surfaces is of direct importance to thermal transport in nanostructures and to dissipation in nanomechanical resonators. Wave scattering theory provides a framework for estimating wavelength dependent specularity, but experimental validation remains elusive. Widely available thermal conductivity data presents poor validation since the involvement of infinitude of phonon wavelengths in thermal transport presents an underconstrained test for specularity theory. Here, we report phonon specularity by measuring the lifetimes of individual coherent longitudinal acoustic phonon modes excited in ultrathin (36-205 nm) suspended silicon membranes at room temperature over the frequency range ∼ 20-118 GHz. Phonon surface scattering dominates intrinsic Akhiezer damping at frequencies 60 GHz, enabling measurements of phonon boundary scattering time over wavelengths ∼72-140 nm. We obtain detailed statistics of the surface roughness at the top and bottom surfaces of membranes using HRTEM imaging. We find that the specularity of the excited modes are in good agreement with solutions of wave scattering only when the TEM statistics are corrected for projection errors. The often cited Ziman formula for phonon specularity also appears in good agreement with the data, contradicting previous results. This work helps to advance the fundamental understanding of phonon scattering at the surfaces of nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.