Electroshock assisted forming of high-strength aluminum alloy is a new type of plasticizing manufacturing method. To study the dynamic recrystallization (DRX) behavior of Al-Zn-Mg-Cu alloy during low-frequency electroshock assisted tension, a cellular automata (CA) model coupled electro-thermal-mechanical multi-field effect was proposed on the Matlab platform. In the established CA model, the effect of additional driving force generated by the electric pulse on the dynamic recrystallization nucleation and growth has been innovatively taken into account. The grain diameters obtained by the above CA model are consistent with that obtained by the electron back scatter diffraction (EBSD) tests, which verified the accuracy of the model. The effects of current density and electrical pulse period on grain morphology, average grain diameter, DRX fraction, and grain size distribution were analyzed. Additionally, the optimal parameters of electroshock assisted tensile (current density of 30 Amm-2, pulse period of 5 s) were predicted by the CA method. At this time, the DRX fraction increased to 45.79% and the fracture elongation of unidirectional tensile specimen increased by 21.74%.
The application of high-strength Al-Zn-Mg-Cu alloy is seriously limited because of its poor formability. A novel electroshock treatment (EST) technique with low frequency combined with tensile deformation was proposed to address the issues of low plasticity and poor formability of Al-Zn-Mg-Cu alloy, which could revolutionize conventional plastic forming methods and realize near-room temperature forming of complex components. Al-Zn-Mg-Cu alloy was examined in this work to figure out how EST affects the tensile characteristics and dynamic recrystallization of the alloy during tensile deformation. The findings demonstrate that when electroshock with a current density of 30 A/mm² and a period of 5 s, the elongation of the alloy increased by 21.74%, and the fraction of dynamic recrystallization increased by 77.56% compared to the sample without EST at a temperature far below the recrystallization temperature. The electron back scatter diffraction (ESBD) results show that after appropriate EST, the average grain size decreased from 40 μm to 30 μm, the distribution of grain was more uniform, and the sample’s grain boundary angle generally increased, which is more attractive to facilitate the nucleation and growth of dynamic recrystallization. Additionally, transmission electron microscopy (TEM) results indicate that electroshock energy motivated the migration of dislocations from the grain interior to near the grain boundaries, improving the ability of Al-Zn-Mg-Cu alloy to dynamically recrystallize at near ambient temperature and enhancing elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.