Multi-photon nonlinear laser wave-mixing spectroscopy is a novel absorption-based technique that offers excellent detection sensitivity for biomedical applications, including early diagnosis and investigation of neurodegenerative diseases. α-Synuclein is linked to Parkinson's disease (PD), and characterization of its oligomers and quantification of the protein may contribute to understanding PD. The laser wave-mixing signal has a quadratic dependence on analyte concentration, and hence the technique is effective in monitoring small changes in concentration within biofluids. A wide variety of labels can be employed for laser wave-mixing detection due to its ability to detect both chromophores and fluorophores. In this investigation, two fluorophores and a chromophore are studied and used as labels for the detection of α-synuclein. Wave-mixing detection limits of PD-related protein conjugated with fluorescein isothiocyanate, QSY 35 acetic acid, succinimidyl ester, and Chromeo P503 were determined to be 1.4 × 10(-13) M, 1.4 × 10(-10) M, and 1.9 × 10(-13) M, respectively. Based on the laser probe volume used, the corresponding mass detection limits were determined to be 1.1 × 10(-23) mol, 1.1 × 10(-20) mol, and 1.5 × 10(-23) mol. This study also presents molecular-based separation and quantification of α-synuclein by laser wave mixing coupled with capillary electrophoresis.
Laser wave-mixing detectors for microfluidics are presented as compact systems for parts-per-quadrillion-level detection of biomedical and environmental samples. Wave mixing offers unique advantages including absorption-based detection of micrometer-thin samples, generation of coherent laser-like signal beams, and sensitive detection of both fluorescing and non-fluorescing samples. Biomarkers could be detected in their native forms without labels, or if labels are desired, one could use both fluorophores and chromophores as labels. By coupling low-power (mW) solid-state lasers and microfluidics and microarrays, one can design compact optical systems that can be battery powered and used in the field for real-time fingerprinting of chemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.