The Particle Swarm Optimization (PSO) algorithm is a metaheuristic based on populations of individuals in which solution candidates evolve through simulation of a simplified model of social adaptation. By aggregating robustness, efficiency and simplicity, PSO has gained great popularity. Many successful applications of PSO are reported in which this algorithm has demonstrated advantages over other well-established metaheuristics based on populations of individuals. Modified PSO algorithms have been proposed to solve optimization problems with domain, linear and nonlinear constraints; The great majority of these algorithms make use of penalty methods, which have, in general, numerous limitations, such as: (i) additional care in defining the appropriate penalty for each problem, since a balance must be maintained between obtaining valid solutions and the searching for an optimal solution; (ii) they assume all solutions must be evaluated. Other algorithms that use multi-objective optimization to deal with constrained problems face the problem of not being able to guarantee finding feasible solutions. The proposed PSO algorithms up to this date that deal with constraints, in order to guarantee valid solutions using feasibility operators and not requiring the evaluation of infeasible solutions, only treat domain constraints by controlling the velocity of particle displacement in the swarm, or do so inefficiently by randomly resetting each infeasible particle, which may make it infeasible to optimize certain problems. This work presents a new particle swarm optimization algorithm, called PSO+, capable of solving problems with linear and nonlinear constraints in order to solve these deficiencies. The modeling of the algorithm has added six different capabilities to solve constrained optimization problems: (i) arithmetic redirection to ensure particle feasibility; (ii) two particle swarms, where each swarm has a specific role in the optimization the problem; (iii) a new particle updating method to insert diversity into the swarm and improve the coverage of the PUC-Rio-Certificação Digital Nº 1321808/CA search space, allowing its edges to be properly exploitedwhich is especially convenient when the problem to be optimized involves active constraints at the optimum solution; (iv) two heuristics to initialize the swarm in order to accelerate and facilitate the initialization of the feasible initial population and guarantee diversity at the starting point of the optimization process; (v) neighborhood topology, called coordinated random clusters neighborhood to minimize optimization premature convergence problem; (vi) transformation of equality constraints into inequality constraints. The algorithm was tested for twenty-four benchmark functionscreated and proposed for an optimization competitionas well as in a real optimization problem of well allocation in an oil reservoir. The experimental results show that the new algorithm is competitive, since it increases the efficiency of the PSO and the speed of convergence.
À Deus.À minha orientadora Professora Marley, pelo apoio e parceria para a realização deste trabalho.Ao meu co-orientador Eugênio, pela confiança, estímulo e importantes contribuições.Aos meus pais, Zita e Helio, pela educação, atenção e carinho.Aos meus irmãos amigos e amigos irmãos Marcella, Dedé, Roberta, JP, Davi, Leonardo, Mariana, Marco, Sarah, Marina, Mateus, por todo apoio, paciência e compreensão.À todos os amigos da PUC-Rio.À todos os amigos e familiares que de uma forma ou de outra me estimularam e me ajudaram.Aos colegas da Petrobràs pela disponibilidade e interesse em contribuir.Aos professores que participaram da Comissão examinadora.Ao CNPq, à PUC-Rio, à Petrobrás e à Pretroleum Experts, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado. o cálculo do VPL é diretamente dependente dos dados de produção de óleo, gás e água durante a vida produtiva do reservatório, bem como de seus custos de desenvolvimento. Determinar a localização, os tipos (produtor ou injetor) e a trajetória de poços em um reservatório é um problema de otimização complexo que depende de uma grande quantidade de variáveis, dentre elas as propriedades do reservatório (tais como porosidade e permeabilidade) e os critérios econômicos. Os processos de otimização aplicados a este tipo de problema têm um alto custo computacional devido ao uso contínuo de simuladores que reproduzem as condições do reservatório e do sistema de superfície. O uso dos simuladores pode ser substituído por um aproximador, que neste trabalho, é um modelo que utiliza Redes Neurais Artificiais. Os aproximadores aqui apresentados são feitos para substituir a simulação integrada do reservatório, do poço e da superfície (linhas de produção e riser). As amostras para a construção do aproximador é feita utilizando os simuladores de reservatório e de superfície e para reduzir o número de amostras necessárias e tornar sua construção mais rápida, utiliza-se Hipercubo Latino e Análise de Componentes Principais. Os aproximadores foram testados em dois reservatórios petrolíferos: um reservatório sintético, e baseado em um caso real. Os resultados encontrados indicam que estes aproximadores conseguem bom desempenho na substituição dos simuladores no processo de otimização devido aos baixos erros encontrados e à substancial PUC-Rio -Certificação Digital Nº 1121522/CA diminuição do custo computacional. The development of an oil reservoir consists in finding an alternative of wells that contributes to maximizing the revenue to be obtained from the recovered reservoir oil. The pursuit for this alternative is often based on optimization processes using the net present value (NPV) of the project as the evaluation function of the alternatives found during this pursuit. Among other variables, the NPV calculation is directly dependent on the oil, gas and water production data during the productive life of the reservoir, as well as their development costs. Determine the number, location, type (producer or injector) and the trajectory of wells in a res...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.