This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Background Sporotrichosis is a worldwide subcutaneous mycosis caused by Sporothrix spp. In the past, this infection was associated with armadillo hunting, horticulturists, miners, and gardeners, being considered an implantation mycosis acquired by plant debris injury. Nevertheless, since the late nineties, it has been considered a zoonotic disease in Brazil. Here we report a case series of 121 patients with cat-transmitted sporotrichosis seen in Northeast Brazil. Methodology/Principal findings Patient’s demographic, clinical data, and length of treatment were recorded. In addition, a mycological examination and further PCR confirmation of species identification were performed. One hundred and twenty two patients were diagnosed with subcutaneous sporotrichosis from October 2016 to December 2019, while PCR revealed that 71 of them were due to S. brasiliensis. The majority of the individuals were female (n = 86; 70.5%). Patient’s age ranged from 5 to 87 years old. The clinical forms found were lymphocutaneous (58.2%) and fixed cutaneous (39.4%). Interestingly, 115 patients reported previous contact with cats diagnosed with sporotrichosis. Patients were successfully treated with itraconazole and potassium iodide. Conclusions/Significance Our study adds important contributions for the investigation of the spread of cat-transmitted subcutaneous sporotrichosis in Brazil, specifically towards the Northeast region of a continental-size country. It will also help clinicians to be aware of the existence and importance to accurately diagnose sporotrichosis and treat patients with this infectious disease in the lowest income region of Brazil.
The Northeast region of Brazil registered the second-highest incidence proportion of Chikungunya fever in 2019. In that year, an outbreak consisting of patients presenting with febrile disease associated with joint pain was reported by the public primary health care service in the city of Natal, in the state of Rio Grande do Norte, in March 2019. At first, the aetiological agent of the disease was undetermined. Since much is still unknown about chikungunya virus' (CHIKV) genomic diversity and evolutionary history in this northeasternmost state, we used a combination of portable whole-genome sequencing, molecular clock, and epidemiological analyses that revealed the reintroduction of the CHIKV East-Central-South-African (ECSA) lineage into Rio Grande do Norte. We estimated that the CHIKV ECSA lineage was first introduced into Rio Grande do Norte in early June 2014, while the 2019 outbreak clade diverged around April 2018, during a period of increased Chikungunya incidence in the Southeast region, which might have acted as a source of virus dispersion towards the Northeast region. Together, these results confirm that the ECSA lineage continues to spread across the country through interregional importation events, likely mediated by human mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.