We have investigated the enthalpic and dielectric relaxations of four groups of quinoline analogs having similar structural properties (i.e., rigidity, stiffness, and bulkiness) but a different steric character and the nature of intermolecular interactions and flexibility. The dielectric fragility index (m) and the enthalpic one (m), determined by the Tool-Narayanaswamy-Moynihan-Hodge formalism, are comparable. Generally, for the four sets of molecules of similar structures, both the interactions and flexibility are found to be critical in making the large span of fragility (i.e., from 59 to 131) and glass forming ability. By contrast, individual impacts of the interaction and flexibility can only explain fragility partly among each group of isomers. We found that the molecules with high fragility are of relatively low liquid density, reflecting the joint impact of the interactions and flexibility. An interesting result is observed among the isomers that the molecules which are fragile have enhanced glass forming ability. The results are unveiling the joint impacts of molecular structure (flexibility) and intermolecular interaction on the molecular dynamics.
The dynamics of a molecular glass former, tributyl phosphate (TBP), with an alkyl phosphate structure (three alkyl branches emanating from a polar core of PO) is studied in the supercooled regime by dielectric and thermal (or enthalpic) relaxations. The dielectric fragility index m and the stretching exponent β of the Kohlrausch-Williams-Watts correlation function are determined. Analyses of the enthalpic relaxation data by the Tool-Narayanaswamy-Moynihan-Hodge formalism yield the enthalpic fragility index m and stretching exponent β. The large difference between the dielectric m and the enthalpic m, as well as between β and β, is a remarkable finding. The differences are interpreted by the formation of molecular self-assemblies. The interpretation is supported by the quite comparable fragility determined by viscosity and the enthalpic relaxation. The Kirkwood factor calculated at low temperatures is also consistent with the interpretation. The results suggest that the enthalpic relaxation involving the motions of all parts of TBP is global, while the dielectric relaxation detects the local rotation, which might originate from the rotation of the dipole moment of the core. The presence of two structural α-relaxations, one global and one local, with a large difference in dynamics is revealed for the first time in a molecular glass former.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.