Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.
Abstract-Particle filtering is known as a robust approach for motion tracking by vision, at the cost of heavy computation in the high dimensional pose space. In this work, we describe a number of heuristics that we demonstrate to jointly improve robustness and real-time for motion capture. 3D human motion capture by monocular vision without markers can be achieved in real-time by registering a 3D articulated model on a video. First, we search the high-dimensional space of 3D poses by generating new hypotheses (or particles) with equivalent 2D projection by kinematic flipping. Second, we use a semi-deterministic particle prediction based on local optimization. Third, we deterministically resample the probability distribution for a more efficient selection of particles. Particles (or poses) are evaluated using a match cost function and penalized with a Gaussian probability pose distribution learned off-line. In order to achieve real-time, measurement step is parallelized on GPU using the OpenCL API. We present experimental results demonstrating robust real-time 3D motion capture with a consumer computer and webcam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.