The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.
ObjectiveWe assessed uptake of isoniazid preventive therapy (IPT) among child contacts of smear-positive tuberculosis (TB) patients and its implementation challenges from healthcare providers’ and parents’ perspectives in Bhopal, India.MethodsA mixed-method study design: quantitative phase (review of programme records and house-to-house survey of smear-positive TB patients) followed by qualitative phase (interviews of healthcare providers and parents).ResultsOf 59 child contacts (<6 years) of 129 index patients, 51 were contacted. Among them, 19 of 51 (37%) were screened for TB and one had TB. Only 11 of 50 (22%) children were started and 10 of 50 (20%) completed IPT. Content analysis of interviews revealed lack of awareness, risk perception among parents, cumbersome screening process, isoniazid stock-outs, inadequate knowledge among healthcare providers and poor programmatic monitoring as main barriers to IPT implementation.ConclusionNational TB programme should counsel parents, train healthcare providers, simplify screening procedures, ensure regular drug supply and introduce an indicator to strengthen monitoring and uptake of IPT.
Heterogeneity amidst healthy individuals at genomic level is being widely acknowledged. This, in turn, is modulated by differential response to environmental cues and treatment regimens, necessitating the need for stratified/personalized therapy. We intend to understand the molecular determinants of Ayurvedic way (ancient Indian system of medicine) of endo-phenotyping individuals into distinct constitution types termed “Prakriti,” which forms the basis of personalized treatment. In this study, we explored and analyzed the healthy human gut microbiome structure within three predominant Prakriti groups from a genetically homogenous cohort to discover differentially abundant taxa, using 16S rRNA gene based microbial community profiling. We found Bacteroidetes and Firmicutes as major gut microbial components in varying composition, albeit with similar trend across Prakriti. Multiple species of the core microbiome showed differential abundance within Prakriti types, with gender specific signature taxons. Our study reveals that despite overall uniform composition of gut microbial community, healthy individuals belonging to different Prakriti groups have enrichment of specific bacteria. It highlights the importance of Prakriti based endo-phenotypes to explain the variability amongst healthy individuals in gut microbial flora that have important consequences for an individual's health, disease and treatment.
Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.
BackgroundPre-diagnosis attrition needs to be addressed urgently if we are to make progress in improving MDR-TB case detection and achieve universal access to MDR-TB care. We report the pre-diagnosis attrition, along with factors associated, and turnaround times related to the diagnostic pathway among patient with presumptive MDR-TB in Bhopal district, central India (2014).MethodsStudy was conducted under the Revised National Tuberculosis Control Programme setting. It was a retrospective cohort study involving record review of all registered TB cases in Bhopal district that met the presumptive MDR-TB criteria (eligible for DST) in 2014. In quarter 1, Line Probe Assay (LPA) was used if sample was smear/culture positive. Quarter 2 onwards, LPA and Cartridge-based Nucleic Acid Amplification Test (CbNAAT) was used for smear positive and smear negative samples respectively. Pre-diagnosis attrition was defined as failure to undergo DST among patients with presumptive MDR-TB (as defined by the programme).ResultsOf 770 patients eligible for DST, 311 underwent DST and 20 patients were diagnosed as having MDR-TB. Pre-diagnosis attrition was 60% (459/770). Among those with pre-diagnosis attrition, 91% (417/459) were not identified as ‘presumptive MDR-TB’ by the programme. TAT [median (IQR)] to undergo DST after eligibility was 4 (0, 10) days. Attrition was more than 40% across all subgroups. Age more than 64 years; those from a medical college; those eligible in quarter 1; patients with presumptive criteria ‘previously treated – recurrent TB’, ‘treatment after loss-to-follow-up’ and ‘previously treated-others’; and patients with extra-pulmonary TB were independent risk factors for not undergoing DST.ConclusionHigh pre-diagnosis attrition was contributed by failure to identify and refer patients. Attrition reduced modestly with time and one factor that might have contributed to this was introduction of CbNAAT in quarter 2 of 2014. General health system strengthening which includes improvement in identification/referral and patient tracking with focus on those with higher risk for not undergoing DST is urgently required.Electronic supplementary materialThe online version of this article (doi:10.1186/s12913-017-2191-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.