This research is carried out to investigate pre-existing repair cracks in cement mortar using the microbiologically induced calcium carbonate precipitation (MICP) technology. In the study, 20-cylinder mortar samples (45 mm in diameter and 40 mm in length) were split to have cracked width of various sizes. Out of twenty cracked samples, sixteen samples of average crack width ranging from 0.12 to 1.3 mm were repaired using the MICP method, while four cracked samples, with an average crack width ranging from 0.16 to 1.55 mm were soaked under distilled water. The water permeability and split tensile strength (STS) of these repaired mortars were tested. The amount of CaCO3 precipitated on the cracked mortar surfaces was evaluated. The results indicated that the MICP repair technique clearly reduced the water permeability of the cracked samples within the range of 73 to 84 %; while water-treated samples were too weak to undergo test. MICP-repaired samples had STS ranging from 29 to 380 kPa after 24 rounds of treatment. A relationship between the STS and percentage amount of CaCO3 precipitated was observed for samples with an average crack width between 0.29 and 1.1 mm, which indicated that STS increased with percentage increase in CaCO3 precipitated on the crack surfaces.
The present study deals with the appropriateness of the coagulation process using natural coagulant Moringa oleifera seed. Natural coagulants are useful for the treatment of wastewater because of its sustainability, cost-effectiveness, non-toxicity and lesser quantity of sludge formation. M. oleifera seed having a chemical composition of polypeptides having 6 amino acids like arginine acid, methionine acid, glutamic acid, phenylalanine, threonine, and histidine. M. oleifera is also known as a cationic polyelectrolyte and having molecular weight 6,000 to16,000 Dalton. The main objective of research work is the application of the M. oleifera seed as a natural adsorbent to treat synthetic dairy wastewater. The effects of pH, agitation time, the dose of sorbent and efficacy of M. oleifera seeds kernel for turbidity removal was assessed. M. oleifera seed eliminates turbidity 95 % and colour 94 % using 0.22 gm pod powder, and 0.2 L of 1.0 g/L synthetic dairy wastewater. Naturally dried M. oleifera seeds remove turbidity 95 %, sundried seeds remove turbidity 52 % and oven-dried seeds 45 %. As naturally dried M. oleifera pod having more surface area for adsorption and inter-particulate bridging which extract the extra active ingredients. pH range between 5 and 8 is more suitable to degrade the turbidity and colour. It is concluded that in the presence of an aqueous soluble cationic coagulant protein has great potential to remove the turbidity and colour of wastewater.
HIGHLIGHTS
oleifera seed having a chemical composition of polypeptides having 6 amino acids like arginine acid, methionine acid, glutamic acid, phenylalanine, threonine, and histidine
oleifera seeds consist of crude fiber, lignin, hemicellulose, and cellulose. It also contains amino functional groups (R-NH3), carboxyl group (C=O), and fiber carbonaceous. The functional group present in M. oleifera seeds is dissociated during the adsorption process at various pH
oleifera has good property of coagulation-flocculation (C-F)
The effectiveness of naturally dried seed kernel is more effective than other seed kernels
GRAPHICAL ABSTRACT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.