Concussions represent an increasing economic burden to society. Motor vehicle collisions (MVCs) are of the leading causes for sustaining a concussion, potentially due to high head accelerations. The change in velocity (i.e., delta-V) of a vehicle in a MVC is an established metric for impact severity. Accordingly, the purpose of this paper is to analyze findings from previous research to determine the relation between delta-V and linear head acceleration, including occupant parameters. Data was collected from previous research papers comprising both linear head acceleration and delta-V at the time of incident, head position of the occupant, awareness of the occupant prior to impact, as well as gender, age, height, and weight. Statistical analysis revealed the following significant power relation between delta-V and head acceleration: head acceleration=0.465delta‐V1.3231 (R2=0.5913, p<0.001). Further analysis revealed that alongside delta-V, the occupant’s gender and head position prior to impact were significant predictors of head acceleration (p=0.022 and p=0.001, respectively). The strongest model developed in this paper is considered physiologically implausible as the delta-V corresponding to a theoretical concussion threshold of 80 g exceeds the delta-V associated with probability of fatality. Future research should be aimed at providing a more thorough data set of the occupant head kinematics in MVCs to help develop a stronger predictive model for the relation between delta-V and head linear and angular acceleration.
Any helmet involved in an accident should be replaced, regardless of appearance after impact. However, consumer compliance and interpretation of this recommendation is unclear, for which there is additional ambiguity for lesser impacts. This study aims to investigate the relation between helmet damage visibility and lesser impacts in line with concussion. As a preliminary model, a commercially available road-style helmet was chosen. Twelve helmets underwent impact attenuation testing; four were dropped from the standard testing height of 2 m, and eight from lower drop heights (0.34 and 0.42 m) associated with the production of linear accelerations (90 and 100 g, respectively) consistent with the production of concussion. Expanded polystyrene damage was assessed via flat punch penetration testing. American adults were then polled on helmet damage visibility based upon before and after photos. All helmets demonstrated damage to the expanded polystyrene liner in the form of altered material properties. Helmets dropped from 2 m displayed significant changes in elastic buckling (p < .01) and densification behavior (p < .01) as compared with lower drop height results. Adverse change in elastic buckling behavior was found to increase linearly with drop height (p < .001). Damage visibility was significant for helmets dropped from a 2-meter height, however, such a relation among the helmets impacted at the threshold for concussion was lacking. These findings suggest that for the chosen helmet model, consumers may be unable to distinguish between new helmets and helmets with diminished protective abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.