Background Nowadays, a wide range of wound dressings is already commercially available. The selection of the dressing is of paramount importance as inappropriate wound management and dressing selection can delay the wound healing process. Not only can this be distressing for the patient, but it can also contribute to complications such as maceration and subsequent infection. Many researchers are targeting the design of dressings with superior properties over existing commercial dressings. However, reported results in the state-of-the-art are rarely benchmarked against commercial dressings. The aim of this study was to determine several characteristics of a large variety of the most frequently used commercial wound dressings, providing an overview for both practitioners and researchers. Methods For this comparative study, 11 frequently used commercial wound dressings were selected, representing the different types. The morphology was studied using scanning electron microscopy. The dressings were characterized in terms of swelling capacity (water, phosphate buffered saline and simulated wound fluid), moisture vapour transmission rate (MVTR) and moisture uptake capacity (via dynamic vapour sorption) as well as mechanical properties using tensile testing and texturometry. Results The selected dressings showed distinctive morphological differences (fibrous, porous and/or gel) which was reflected in the different properties. Indeed, the swelling capacities ranged between 1.5 and 23.2 g/g (water), 2.1 and 17.6 g/g (phosphate buffered saline) or 2.9 and 20.8 g/g (simulated wound fluid). The swelling capacity of the dressings in water increased even further upon freeze-drying, due to the formation of pores. The MVTR values varied between 40 and 930 g/m2/24 h. The maximal moisture uptake capacity varied between 5.8% and 105.7% at 95% relative humidity. Some commercial dressings exhibited a superior mechanical strength, due to either being hydrophobic or multi-layered. Conclusions The present work not only offers insight into a valuable toolbox of suitable wound dressing characterization techniques, but also provides an extensive landscaping of commercial dressings along with their physico-chemical properties, obtained through reproducible experimental protocols. Furthermore, it ensures appropriate benchmark values for commercial dressings in all forthcoming studies and could aid researchers with the development of novel modern wound dressings. The tested dressings either exhibited a high strength or a high swelling capacity, suggesting that there is still a strong potential in the wound dressings market for dressings that possess both.
Malodorous wounds have a detrimental effect on the patient's well‐being. A dressing combining the properties of hydrogels and activated carbon (AC) would be beneficial for the treatment of these wounds, controlling wound exudate while adsorbing malodor‐causing compounds. The present work involves the use of acrylate‐endcapped, urethane‐based precursors (AUPs) and methacrylated alginate (AlgMOD). AUPs are synthesized with a varying poly(ethylene glycol) backbone molar mass (2–20 kg mol−1) to tune mechanical and swelling properties, whereas methacrylated alginate, known for its hemostatic properties, enables chemical cross‐linking. Blends of AUP and AlgMOD with AC are processed into hydrogel sheets and electrospun membranes. The results indicate tunable mechanical (Young's moduli 0.03–0.63 MPa) and swelling properties (2.2–34.9 gwater ) along with high gel fractions (>85%). The sheets are compared with commercial odor‐adsorbing dressings (Carbonet and Carboflex), enabling benchmarking. AUP sheets (8 and 10 kg mol−1) containing 0.5% w/w AC show strong adsorption (>90% after 24 h) of crystal violet. The obtained (core–shell AlgMOD/AUP) fibers are visualized using scanning and transmission electron microscopy. Indirect cell tests reveal the developed materials to be biocompatible. In conclusion, a hydrogel‐based odor‐adsorbing wound dressing is successfully synthesized and holds promise for malodorous wound healing.
Wound dressings under the form of films constituted of modified alginate (methacrylated alginate – AlgMA) versus a gelatine derivative containing norbornene functionalities (GelNB) are developed and evaluated for their moisturizing effects, followed by further in vivo testing to assay their wound healing potential. The gel fraction results shows that AlgMA and GelNB films displayed a high crosslinking efficiency while the swelling assay reveals a stronger water uptake capacity for AlgMA films compared to GelNB and to commercial dressing AquacelAg, used as positive control. Referring to the in vivo wound healing effect, the GelNB films not only exhibit proper healing properties, yet is higher to the AquacelAg, while the AlgMA films exhibit similar wound healing effect as the positive control. On a microscopic level, the healing phases (from inflammation to proliferation and contraction) are present for both materials, yet at a faster rate for the GelNB films, which is in line with the macroscopic findings. These results provide data which support that GelNB films outperform AlgMA films, but both can be used for wound healing applications.
Most commercial dressings with moderate to high exudate uptake capacities are mechanically weaker and/or require a secondary dressing. The current research article focuses on the development of hydrogel-based wound dressings combining mechanical strength with high exudate absorption capacities using acrylate-endcapped urethane-based precursors (AUPs). AUPs with varying poly(ethylene glycol) backbone molar masses (10 and 20 kg mol −1 ) and endcap chemistries are successfully synthesized in toluene, subsequently processed into UV-cured hydrogel sheets and are benchmarked against several commercial wound dressings (Hydrosorb, Kaltostat, and Mepilex Ag). The AUP materials show high gel fractions (>90%) together with strong swelling degrees in water, phosphate buffered saline and simulated wound fluid (12.7-19.6 g g −1 ), as well as tunable mechanical properties (e.g., Young's modulus: 0.026-0.061 MPa). The AUPs have significantly (p < 0.05) higher swelling degrees than the tested commercial dressings, while also being mechanically resistant. The elasticity of the synthesized materials leads to an increased resistance against fatigue. The di-and hexa-acrylated AUPs show excellent in vitro biocompatibility against human foreskin fibroblasts, as evidenced by indirect MTS assays and live/dead cell assays. In conclusion, the processed AUP materials demonstrate high potential for wound healing application and can even compete with commercially available dressings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.