Hydrogels are physically or chemically cross-linked polymer networks that are able to absorb large amounts of water. They can be classified into different categories depending on various parameters including the preparation method, the charge, and the mechanical and structural characteristics. The present review aims to give an overview of hydrogels based on natural polymers and their various applications in the field of tissue engineering. In a first part, relevant parameters describing different hydrogel properties and the strategies applied to finetune these characteristics will be described. In a second part, an important class of biopolymers that possess thermosensitive properties (UCST or LCST behavior) will be discussed. Another part of the review will be devoted to the application of cryogels. Finally, the most relevant biopolymer-based hydrogel systems, the different methods of preparation, as well as an in depth overview of the applications in the field of tissue engineering will be given.
The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent scientific advances in cationic polymers and their derivatives not only for gene delivery purposes but also for various alternative therapeutic applications. An overview of the synthesis and preparation of cationic polymers is provided along with their inherent bioactive and intrinsic therapeutic potential. In addition, cationic polymer based biomedical materials are covered. Major progress in the fields of drug and gene delivery as well as tissue engineering applications is summarized in the present review.
Concrete cracks due to its low tensile strength. The presence of cracks endangers the durability as they generate a pathway for harmful particles dissolved in fluids and gases. Without a proper treatment, maintenance costs will increase. Self-healing can prevail in small cracks due to precipitation of calcium carbonate and further hydration. Therefore, the use of microfibres is proposed to control the crack width and thus to promote the self-healing efficiency. In the current research, crack sealing is also enhanced by the application of superabsorbent polymers. When cracking occurs, superabsorbent polymers are exposed to the humid environment and swell. This swelling reaction seals the crack from intruding potentially harmful substances. Mortar mixtures with microfibres and with and without superabsorbent polymers were investigated on their crack sealing and healing efficiency. Regain in mechanical properties upon crack healing was investigated by the performance of four-point-bending tests, and the sealing capacity of the superabsorbent polymer particles was measured through a decrease in water permeability. In an environment with a relative humidity of more than 60%, only samples with superabsorbent polymers showed healing. Introducing 1 m% of superabsorbent polymer gives the best results, considering no reduction of the mechanical properties in comparison to the reference, and the superior self-sealing capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.