Hydrogels are physically or chemically cross-linked polymer networks that are able to absorb large amounts of water. They can be classified into different categories depending on various parameters including the preparation method, the charge, and the mechanical and structural characteristics. The present review aims to give an overview of hydrogels based on natural polymers and their various applications in the field of tissue engineering. In a first part, relevant parameters describing different hydrogel properties and the strategies applied to finetune these characteristics will be described. In a second part, an important class of biopolymers that possess thermosensitive properties (UCST or LCST behavior) will be discussed. Another part of the review will be devoted to the application of cryogels. Finally, the most relevant biopolymer-based hydrogel systems, the different methods of preparation, as well as an in depth overview of the applications in the field of tissue engineering will be given.
In modern technology, there is a constant need to solve very complex problems and to fine-tune existing solutions. This is definitely the case in modern medicine with emerging fields such as regenerative medicine and tissue engineering. The problems, which are studied in these fields, set very high demands on the applied materials. In most cases, it is impossible to find a single material that meets all demands such as biocompatibility, mechanical strength, biodegradability (if required), and promotion of cell-adhesion, proliferation, and differentiation. A common strategy to circumvent this problem is the application of composite materials, which combine the properties of the different constituents. Another possible strategy is to selectively modify the surface of a material using different modification techniques. In the past decade, the use of nonthermal plasmas for selective surface modification has been a rapidly growing research field. This will be the highlight of this review. In a first part of this paper, a general introduction in the field of surface engineering will be given. Thereafter, we will focus on plasma-based strategies for surface modification. The purpose of the present review is twofold. First, we wish to provide a tutorial-type review that allows a fast introduction for researchers into the field. Second, we aim to give a comprehensive overview of recent work on surface modification of polymeric biomaterials, with a focus on plasma-based strategies. Some recent trends will be exemplified. On the basis of this literature study, we will conclude with some future trends for research.
Label-free biosensors attempt to overcome the stability and reliability problems of biosensors relying on the detection of labeled molecules. We propose a label-free biosensor based on microring cavities in Silicon-on-Insulator (SOI) that fits in an area below 10x10mum(2). The resonance wavelength shift that occurs when the surroundings of a cavity is changed, is used for sensing. While theoretically the performance for bulk refractive index changes is moderate (10(-5)), this device performs outstanding in terms of absolute molecular mass sensing (theoretical sensitivity of 1fg molecular mass) thanks to its extremely small dimensions. We use the avidin/biotin high affinity couple to demonstrate good repeatability and detection of protein concentrations down to 10ng/ml. Fabrication with Deep UV lithography allows for cheap mass production and integration with electronic functions for complete lab-on-chip devices.
Cationic polymers can self-assemble with DNA to form polyelectrolyte complexes capable of gene delivery, although biocompatibility of the complexes is generally limited. Here we have used A-B type cationic-hydrophilic block co-polymers to introduce a protective surface hydrophilic shielding following oriented self-assembly with DNA. Block co-polymers of poly(ethylene glycol)-poly-L-lysine (pEG-pLL) and poly-N-(2-hydroxypropyl)methacrylamide-poly(trimethylammonioethyl methacrylate chloride) (pHPMA-pTMAEM) both show spontaneous formation of complexes with DNA. Surface charge measured by zeta potential is decreased compared with equivalent polycation-DNA complexes in each case. Atomic force microscopy shows that pHPMA-pTMAEM/DNA complexes are discrete spheres similar to those formed between DNA and simple polycations, whereas pEG-pLL/DNA complexes adopt an extended structure. Biological properties depend on the charge ratio of formation. At optimal charge ratio, pEG-pLL/DNA complexes show efficient transfection of 293 cells in vitro, while pHPMA-pTMAEM/DNA complexes are more inert. Both block co-polymer-DNA complexes show only limited cytotoxicity. Careful selection of block co-polymer structure can influence the physicochemical and biological properties of the complexes and should permit design of materials for specific applications, including targeted delivery of genes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.