Synthetic reactive oxygen species (ROS)-responsive biomaterials have emerged as a useful platform for regulating critical aspects of ROS-induced pathologies and can improve such hostile microenvironments. Here, we report a series of new hyperbranched poly(β-hydrazide ester) macromers (HB-PBHEs) with disulfide moieties synthesized via an "A2+B4" Michael addition approach. The three-dimensional structure of HB-PBHEs with multi-acrylate end groups endows the macromers with rapid gelation capabilities to form (1) injectable hydrogels via crosslinking with thiolated hyaluronic acid, and (2) robust UV-crosslinked hydrogels. The disulfide containing macromers and hydrogels exhibit H2O2-responsive degradation compared to the counterparts synthesized by a dihydrazide monomer without disulfide moieties. The cell viability under a high ROS environment can be well-maintained under the protection of the disulfide containing hydrogels.
Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.
Type I and III interferons (IFN-I/λ) are key antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that the plasmacytoid dendritic cells (pDCs) are predominant IFN-I/λ source by sensing SARS-CoV-2-infected cells. We show that sensing of viral RNA by pDCs requires sustained cell adhesion with infected cells. In turn, the pDCs restrict viral spread by a local IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely by a concentrated flux of antiviral effectors at the contact site with infected cells. Therefore, we propose that pDC activation is essential to locally control SARS-CoV-2-infection. By exploring the pDC response in patients, we further demonstrate that pDC responsiveness correlates with the severity of the disease and in particular that it is impaired in severe COVID-19 patients. Thus, the ability of pDCs to respond to SARS-CoV-2-infected cells could be a key to understand severe cases of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.