Polypropylene/Pine apple leaf fiber (PP/ PALF)-reinforced nanocomposites were fabricated using melt blending technique in a twin-screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA-g-PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E 0 ) and damping factor (tan d), confirming a strong influence between the fiber/nanoclay and MA-g-PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X-ray diffraction studies indicated an increase in d-spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology.
The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA), and O-hydroxybenzene diazonium chloride (OBDC) to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF) composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), and heat deflection temperature (HDT) results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM) supports improves surface interaction between fiber surface and polymer matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.