We propose a Bayesian vector autoregressive (VAR) model for mixed-frequency data. Our model is based on the mean-adjusted parametrization of the VAR and allows for an explicit prior on the “steady states” (unconditional means) of the included variables. Based on recent developments in the literature, we discuss extensions of the model that improve the flexibility of the modeling approach. These extensions include a hierarchical shrinkage prior for the steady-state parameters, and the use of stochastic volatility to model heteroskedasticity. We put the proposed model to use in a forecast evaluation using US data consisting of 10 monthly and three quarterly variables. The results show that the predictive ability typically benefits from using mixed-frequency data, and that improvement can be obtained for both monthly and quarterly variables. We also find that the steady-state prior generally enhances the accuracy of the forecasts, and that accounting for heteroskedasticity by means of stochastic volatility usually provides additional improvements, although not for all variables.
We propose a Bayesian vector autoregressive (VAR) model for mixed-frequency data. Our model is based on the mean-adjusted parametrization of the VAR and allows for an explicit prior on the 'steady states' (unconditional means) of the included variables. Based on recent developments in the literature, we discuss extensions of the model that improve the flexibility of the modeling approach. These extensions include a hierarchical shrinkage prior for the steady-state parameters, and the use of stochastic volatility to model heteroskedasticity. We put the proposed model to use in a forecast evaluation using US data consisting of 10 monthly and 3 quarterly variables. The results show that the predictive ability typically benefits from using mixed-frequency data, and that improvements can be obtained for both monthly and quarterly variables. We also find that the steady-state prior generally enhances the accuracy of the forecasts, and that accounting for heteroskedasticity by means of stochastic volatility usually provides additional improvements, although not for all variables.
We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells’ ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.
We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells' ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.