Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a [Formula: see text] test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.
We propose a Bayesian vector autoregressive (VAR) model for mixed-frequency data. Our model is based on the mean-adjusted parametrization of the VAR and allows for an explicit prior on the “steady states” (unconditional means) of the included variables. Based on recent developments in the literature, we discuss extensions of the model that improve the flexibility of the modeling approach. These extensions include a hierarchical shrinkage prior for the steady-state parameters, and the use of stochastic volatility to model heteroskedasticity. We put the proposed model to use in a forecast evaluation using US data consisting of 10 monthly and three quarterly variables. The results show that the predictive ability typically benefits from using mixed-frequency data, and that improvement can be obtained for both monthly and quarterly variables. We also find that the steady-state prior generally enhances the accuracy of the forecasts, and that accounting for heteroskedasticity by means of stochastic volatility usually provides additional improvements, although not for all variables.
We propose a Bayesian vector autoregressive (VAR) model for mixed-frequency data. Our model is based on the mean-adjusted parametrization of the VAR and allows for an explicit prior on the 'steady states' (unconditional means) of the included variables. Based on recent developments in the literature, we discuss extensions of the model that improve the flexibility of the modeling approach. These extensions include a hierarchical shrinkage prior for the steady-state parameters, and the use of stochastic volatility to model heteroskedasticity. We put the proposed model to use in a forecast evaluation using US data consisting of 10 monthly and 3 quarterly variables. The results show that the predictive ability typically benefits from using mixed-frequency data, and that improvements can be obtained for both monthly and quarterly variables. We also find that the steady-state prior generally enhances the accuracy of the forecasts, and that accounting for heteroskedasticity by means of stochastic volatility usually provides additional improvements, although not for all variables.
This paper first describes financial variables that have been constructed to correspond to various channels in the transmission mechanism. Next, a Bayesian VAR model for the macroeconomy, with priors on the steady states, is augmented with these financial variables and estimated using Swedish data for 1989-2015. The results support three conclusions. First, the financial system is important and the strength of the results is dependent on identification, with the financial variables accounting for 10-25 % of the forecast error variance of Swedish GDP growth. Second, the suggested model produces an earlier signal regarding the probability of recession, compared to a model without financial variables. Third, the model's forecasts for the deep downturn in 2008 and 2009, conditional on the development of the financial variables, outperform a macro-model that lacks financial variables. Furthermore, this improvement in modelling Swedish GDP growth during the financial crisis does not come at the expense of unconditional predictive power. Taken together, the results suggest that the proposed model presents an accessible possibility to analyse the macro-financial linkages and the GDP developments, especially during a financial crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.