Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a [Formula: see text] test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.
The polychoric instrumental variable (PIV) approach is a recently proposed method to fit a confirmatory factor analysis model with ordinal data. In this paper, we first examine the small-sample properties of the specification tests for testing the validity of instrumental variables (IVs). Second, we investigate the effects of using different numbers of IVs. Our results show that specification tests derived for continuous data are extremely oversized at all sample sizes when applied to ordinal variables. Possible modifications for ordinal data are proposed in the present study. Simulation results show that the modified specification tests with all available IVs are able to detect model misspecification. In terms of estimation accuracy, the PIV approach where the IVs outnumber the endogenous variables by one produces a lower bias but a higher variation than the PIV approach with more IVs for correctly specified factor loadings at small samples.
The problem of penalized maximum likelihood (PML) for an exploratory factor analysis (EFA) model is studied in this paper. An EFA model is typically estimated using maximum likelihood and then the estimated loading matrix is rotated to obtain a sparse representation. Penalized maximum likelihood simultaneously fits the EFA model and produces a sparse loading matrix. To overcome some of the computational drawbacks of PML, an approximation to PML is proposed in this paper. It is further applied to an empirical dataset for illustration. A simulation study shows that the approximation naturally produces a sparse loading matrix and more accurately estimates the factor loadings and the covariance matrix, in the sense of having a lower mean squared error than factor rotations, under various conditions.
Asymptotic robustness against misspecification of the underlying distribution for the polychoric correlation estimation is studied. The asymptotic normality of the pseudo-maximum likelihood estimator is derived using the two-step estimation procedure. The t distribution assumption and the skew-normal distribution assumption are used as alternatives to the normal distribution assumption in a numerical study. The numerical results show that the underlying normal distribution can be substantially biased, even though skewness and kurtosis are not large. The skew-normal assumption generally produces a lower bias than the normal assumption. Thus, it is worth using a non-normal distributional assumption if the normal assumption is dubious.Electronic supplementary materialThe online version of this article (doi:10.1007/s11336-016-9512-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.