This manuscript is devoted to investigating a fractional-order mathematical model of COVID-19. The corresponding derivative is taken in Caputo sense with power-law of fractional order μ and fractal dimension χ. We give some detailed analysis on the existence and uniqueness of the solution to the proposed problem. Furthermore, some results regarding basic reproduction number and stability are given. For the proposed theoretical analysis, we use fixed point theory while for numerical analysis fractional Adams–Bashforth iterative techniques are utilized. Using our numerical scheme is verified by using some real values of the parameters to plot the approximate solution to the considered model. Graphical presentations corresponding to different values of fractional order and fractal dimensions are given. Moreover, we provide some information regarding the real data of Saudi Arabia from 1 March 2020 till 22 April 2021, then calculated the fatality rates by utilizing the SPSS, Eviews and Expert Modeler procedure. We also built forecasts of infection for the period 23 April 2021 to 30 May 2021, with 95% confidence.
This study aims to structure and evaluate a new COVID-19 model which predicts vaccination effect in the Kingdom of Saudi Arabia (KSA) under Atangana-Baleanu-Caputo (ABC) fractional derivatives. On the statistical aspect, we analyze the collected statistical data of fully vaccinated people from June 01, 2021, to February 15, 2022. Then we apply the Eviews program to find the best model for predicting the vaccination against this pandemic, based on daily series data from February 16, 2022, to April 15, 2022. The results of data analysis show that the appropriate model is autoregressive integrated moving average ARIMA (1, 1, 2), and hence, a forecast about the evolution of the COVID-19 vaccination in 60 days is presented. The theoretical aspect provides equilibrium points, reproduction number R 0 , and biologically feasible region of the proposed model. Also, we obtain the existence and uniqueness results by using the Picard-Lindel method and the iterative scheme with the Laplace transform. On the numerical aspect, we apply the generalized scheme of the Adams-Bashforth technique in order to simulate the fractional model. Moreover, numerical simulations are performed dependent on real data of COVID-19 in KSA to show the plots of the effects of the fractional-order operator with the anticipation that the suggested model approximation will be better than that of the established traditional model. Finally, the concerned numerical simulations are compared with the exact real available date given in the statistical aspect.
This paper aims to review the literature on the determinants of poverty. This study also provides insights into the interplay between demographic, social, economic, and political determinants and their impact on poverty levels. This review concludes by emphasising the interconnectedness of these determinants and the need for comprehensive and integrated approaches to poverty reduction. The literature review results revealed a significant effect of the economic, social, demographic and political determinants on poverty. Finally, the paper provides insights for policymakers and practitioners seeking to develop strategies that promote sustainable development for poverty reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.