In the last decade, the southwestern and western provinces of Iran have been heavily affected by aeolian dust deposition. As a result, the elemental composition of soil surfaces is influenced by dust transport as well as precipitation, wind speed and direction. The relationship between daily recorded dust events and the elemental composition of the dust is studied in this paper. Strong correlations were detected between dust deposition rate from most deposition sites (G01-G10, except for G05, G06) and the dust event frequency. Correlations of different strengths have been revealed between the dust event frequencies (DEF), and the elemental classification matrix based on airborne Metal Regulations. As expected, high correlation values indicate high concentration contributions of elemental values to the aerosol, such as Na, Mn, As, Pb, from large-scale depositions in the south including Cr and V in the west. These findings also suggest that the major contributors of V, Cr, Co, Ni, Cu, Zn, As, Se, Cd, Ba, and Pb in the elemental concentrations may depend on the meteorological situation and correlation magnitude are associated with elements emanating from local anthropogenic activities.
Barren ground and sites with low coverage by vegetation (e.g., dunes, soil surfaces, dry lakes, and riverbeds) are the main source areas of sand and dust storms (SDS). The understanding of causes, processes (abrasion, deflation, transport, deposition), and influencing factors of sandy and dusty particles moving by wind both in the boundary layer and in the atmosphere are basic prerequisites to distinguish between SDS. Dust transport in the atmosphere modulates radiation, ocean surface temperature, climate, as well as snow and ice cover. The effects of airborne particles on land are varied and can cause advantages and disadvantages, both in source areas and in sink or deposition areas, with disturbances of natural environments and anthropogenic infrastructure. Particulate matter in general and SDS specifically can cause severe health problems in human respiratory and other organs, especially in children. Economic impacts can be equally devastating, but the costs related to SDS are not thoroughly studied. The available data show huge economic damages caused by SDS and by the mitigation of their effects. Management of SDS-related hazards utilizes remote sensing techniques, on-site observations, and protective measures. Integrated strategies are necessary during both the planning and monitoring of these measures. Such integrated strategies can be successful when they are developed and implemented in close cooperation with the local and regional population and stakeholders.
The relationships between monthly recorded ground deposition rates (GDRs) and the spatiotemporal characteristics of dust concentrations in southwest Iran were investigated. A simulation by the Weather Research and Forecasting Model coupled with the Chemistry modeling system (WRF-Chem) was conducted for dust deposition during 2014–2015. The monthly dust deposition values observed at 10 different gauge sites (G01–G10) were mapped to show the seasonal and spatial variations in dust episodes at each location. An analysis of the dust deposition samples, however, confirmed that the region along the deposition sites is exposed to the highest monthly dust load, which has a mean value of 2.4 mg cm−2. In addition, the study area is subjected to seasonally varying deposition, which follows the trend: spring > summer > winter > fall. The modeling results further demonstrate that the increase in dust emissions is followed by a windward convergence over the region (particularly in the spring and summer). Based on the maximum likelihood classification of land use land cover, the modeling results are consistent with observation data at gauge sites for three scenarios [S.I, S.II, and S.III]. The WRF model, in contrast with the corresponding observation data, reveals that the rate factor decreases from the southern [S.III—G08, G09, and G10] through [S.II—G04, G05, G06, and G07] to the northern points [S.I—G01, G02, and G03]. A narrower gap between the modeling results and GDRs is indicated if there is an increase in the number of dust particles moving to lower altitudes or an increase in the dust resident time at high altitudes. The quality of the model forecast is altered by the deposition rate and is sensitive to land surface properties and interactions among land and climate patterns.
Dust and atmospheric particles have been described in southwestern Iran primarily in terms of load, concentration and transport. The passive deposition, however, has been discussed inadequately. Therefore, the relationships between different climate zones in southwestern Iran and dust deposition rates were quantified between 2014 and 2017 using both space- (second modern-era retrospective analysis for research and applications, version 2 reanalysis model) and ground-based (eolian ground deposition rate) tools. In addition, the surface meteorological records, including the wind patterns favoring the occurrence of dust events, were examined. A hot desert climate (BWh), hot semi-arid climate (BSh), and temperate hot and dry summer climate (Csa) were identified as the three dominant climate regions in the study area, exhibiting the highest average dust deposition rates. In this study, correlations between the most relevant climate patterns and deposition rate weather parameters were found to describe a region’s deposition rate when a dust event occurred. Based on these results, the BSh and Csa regions were found to be associated with the seasonal cycle of dust events in March, April, and May, revealing that in the long run meteorological conditions were responsible for the varying dust deposition rates. Relatively, precipitation and temperature were the two major factors influencing dust deposition rates, not wind speed. Moreover, the peak seasonal deposition rates in the spring and summer were 8.40 t km−2 month−1, 6.06 t km−2 month−1, and 3.30 t km−2 month−1 for the BWh, BSh, and Csa climate regions, respectively. However, each of these climate types was directly related to the specific quantity of the dust deposition rates. Overall, the highest dust deposition rates were detected over the years studied were 100.80 t km−2 year−1, 79.27 t km−2 year−1, and 39.60 t km−2 year−1 for BWh, BSh, and Csa, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.