Background Gastric cancer (GC) is the fifth most common cancer and the third cause of cancer deaths globally, with late diagnosis, low survival rate, and poor prognosis. This case-control study aimed to evaluate the expression of cystatin B (CSTB) and deleted in malignant brain tumor 1 (DMBT1) in the saliva of GC patients with healthy individuals to construct diagnostic algorithms using statistical analysis and machine learning methods. Methods Demographic data, clinical characteristics, and food intake habits of the case and control group were gathered through a standard checklist. Unstimulated whole saliva samples were taken from 31 healthy individuals and 31 GC patients. Through ELISA test and statistical analysis, the expression of salivary CSTB and DMBT1 proteins was evaluated. To construct diagnostic algorithms, we used the machine learning method. Results The mean salivary expression of CSTB in GC patients was significantly lower (115.55 ± 7.06, p = 0.001), and the mean salivary expression of DMBT1 in GC patients was significantly higher (171.88 ± 39.67, p = 0.002) than the control. Multiple linear regression analysis demonstrated that GC was significantly correlated with high levels of DMBT1 after controlling the effects of age of participants (R2 = 0.20, p < 0.001). Considering salivary CSTB greater than 119.06 ng/mL as an optimal cut-off value, the sensitivity and specificity of CSTB in the diagnosis of GC were 83.87 and 70.97%, respectively. The area under the ROC curve was calculated as 0.728. The optimal cut-off value of DMBT1 for differentiating GC patients from controls was greater than 146.33 ng/mL (sensitivity = 80.65% and specificity = 64.52%). The area under the ROC curve was up to 0.741. As a result of the machine learning method, the area under the receiver-operating characteristic curve for the diagnostic ability of CSTB, DMBT1, demographic data, clinical characteristics, and food intake habits was 0.95. The machine learning model’s sensitivity, specificity, and accuracy were 100, 70.8, and 80.5%, respectively. Conclusion Salivary levels of DMBT1 and CSTB may be accurate in diagnosing GCs. Machine learning analyses using salivary biomarkers, demographic, clinical, and nutrition habits data simultaneously could provide affordability models with acceptable accuracy for differentiation of GC by a cost-effective and non-invasive method.
Background Early childhood caries is the most common infectious disease in childhood, with a high prevalence in developing countries. The assessment of the variables that influence early childhood caries as well as its pathophysiology leads to improved control of this disease. Cystatin S, as one of the salivary proteins, has an essential role in pellicle formation, tooth re-mineralization, and protection. The present study aims to assess salivary cystatin S levels and demographic data in early childhood caries in comparison with caries-free ones using statistical analysis and machine learning methods. Methods A cross-sectional, case–control study was undertaken on 20 cases of early childhood caries and 20 caries-free children as a control. Unstimulated whole saliva samples were collected by suction. Cystatin S concentrations in samples were determined using human cystatin S ELISA kit. The checklist was collected from participants about demographic characteristics, oral health status, and dietary habits by interviewing parents. Regression and receiver operating characteristic (ROC) curve analysis were done to evaluate the potential role of cystatin S salivary level and demographic using statistical analysis and machine learning. Results The mean value of salivary cystatin S concentration in the early childhood caries group was 191.55 ± 81.90 (ng/ml) and in the caries-free group was 370.06 ± 128.87 (ng/ml). T-test analysis showed a statistically significant difference between early childhood caries and caries-free groups in salivary cystatin S levels (p = 0.032). Investigation of the area under the curve (AUC) and accuracy of the ROC curve revealed that the logistic regression model based on salivary cystatin S levels and birth weight had the most and acceptable potential for discriminating of early childhood caries from caries-free controls. Furthermore, using salivary cystatin S levels enhanced the capability of machine learning methods to differentiate early childhood caries from caries-free controls. Conclusion Salivary cystatin S levels in caries-free children were higher than the children with early childhood caries. Results of the present study suggest that considering clinical examination, demographic and socioeconomic factors, along with the salivary cystatin S levels, could be usefull for early diagnosis ofearly childhood caries in high-risk children; furthermore, cystatin S is a protective factor against dental caries.
Background: This study aimed to investigate the oral health presentations of coronavirus disease 2019 (COVID-19) inpatients using statistical analysis and machine learning methods before infection, during hospitalization, and after discharge from the hospital. Methods: This cross-sectional study was conducted on 140 hospitalized COVID-19 patients with reverse transcription-polymerase chain reaction diagnosis and severe symptoms. Demographic data, clinical characteristics, oral health habits, and oral manifestations in three periods (i.e., before infection, during hospitalization, and after discharge from the hospital) were recorded through a questionnaire and oral examination. Statistical analysis and machine learning methods were used for the analysis of patients’ data. Results: Xerostomia, dysgeusia, hypogeusia, halitosis, and a metallic taste were the most frequent oral symptoms during hospitalization, with the incidence of 68.6%, 51.4%, 49.3%, 31.4%, and 29.3% in patients, respectively. Using tobacco significantly increased the incidence of xerostomia, dysgeusia, hypogeusia, halitosis, and a metallic taste during hospitalization (P = 0.011, P = 0.001, P = 0.002, P = 0.0001, and P = 0.0001, respectively). Smoking led to increasing dysgeusia, hypogeusia, halitosis, and a metallic taste during hospitalization (P = 0.019, P = 0.014, P = 0.013, and P = 0.006, respectively). The micro-average receiver operating characteristic (ROC) curve analysis revealed that the machine learning logistic regression model achieved the highest area under the ROC curve with a value of 0.83. Conclusions: Xerostomia and dysgeusia are the most common oral symptoms of COVID-19 patients and could be used to predict COVID-19 infection. Dysgeusia correlates with xerostomia, and it is hypothesized that xerostomia is an etiologic factor for dysgeusia. The early detection of COVID-19 can help reduce the enormous burden on healthcare systems, and machine learning is advantageous for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.