This article presents the development and application of a distinct adaptive control algorithm that is based on fuzzy logic and was used to control the specific growth rate (SGR) in a fed-batch biotechnological process. The developed control algorithm was compared with two adaptive control systems that were based on a model-free adaptive technique and gain scheduling technique. A typical mathematical model of recombinant Escherichia coli fed-batch cultivation process was selected to evaluate the performance of the fuzzy-based control algorithm. The investigated control techniques performed similarly when considering the whole process duration. The adaptive PI controller with fuzzy-based parameter adaptation demonstrated advantages over the previously mentioned algorithms—especially when compensating the deviations of the SGR. These deviations usually occur when the equipment malfunctions or process disturbances take place. The fuzzy-based control system was stable within the investigated ranges. It was determined that, regarding control quality, the investigated control algorithms are suited to control the SGR in a fed-batch biotechnological process. However, substrate feeding rate manipulation and limitation needs to be used. Taking into account the time needed to design and tune the controller, the developed controller is suitable for practical applications when expert knowledge is available. The proposed algorithm can be further adapted and developed to control the SGR in other cell cultivations while running the process under substrate limitation conditions.
An adaptive control system for the set-point control and disturbance rejection of biotechnological-process parameters is presented. The gain scheduling of PID (PI) controller parameters is based on only controller input/output signals and does not require additional measurement of process variables for controller-parameter adaptation. Realization of the proposed system does not depend on the instrumentation-level of the bioreactor and is, therefore, attractive for practical application. A simple gain-scheduling algorithm is developed, using tendency models of the controlled process. Dissolved oxygen concentration was controlled using the developed control system. The biotechnological process was simulated in fed-batch operating mode, under extreme operating conditions (the oxygen uptake-rate’s rapidly and widely varying, feeding and aeration rate disturbances). In the simulation experiments, the gain-scheduled controller demonstrated robust behavior and outperformed the compared conventional PI controller with fixed parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.