Assume that an agent models a financial asset through a measure Q with the goal to price/hedge some derivative or optimise some expected utility. Even if the model Q is chosen in the most skilful and sophisticated way, the agent is left with the possibility that Q does not provide an exact description of reality. This leads us to the following question: will the hedge still be somewhat meaningful for models in the proximity of Q? If we measure proximity with the usual Wasserstein distance (say), the answer is No. Models which are similar with respect to the Wasserstein distance may provide dramatically different information on which to base a hedging strategy. Remarkably, this can be overcome by considering a suitable adapted version of the Wasserstein distance which takes the temporal structure of pricing models into account. This adapted Wasserstein distance is most closely related to the nested distance as pioneered by Pflug and Pichler (
A number of researchers have introduced topological structures on the set of laws of stochastic processes. A unifying goal of these authors is to strengthen the usual weak topology in order to adequately capture the temporal structure of stochastic processes. Aldous defines an extended weak topology based on the weak convergence of prediction processes. In the economic literature, Hellwig introduced the information topology to study the stability of equilibrium problems. Bion–Nadal and Talay introduce a version of the Wasserstein distance between the laws of diffusion processes. Pflug and Pichler consider the nested distance (and the weak nested topology) to obtain continuity of stochastic multistage programming problems. These distances can be seen as a symmetrization of Lassalle’s causal transport problem, but there are also further natural ways to derive a topology from causal transport. Our main result is that all of these seemingly independent approaches define the same topology in finite discrete time. Moreover we show that this ‘weak adapted topology’ is characterized as the coarsest topology that guarantees continuity of optimal stopping problems for continuous bounded reward functions.
We adapt ideas and concepts developed in optimal transport (and its martingale variant) to give a geometric description of optimal stopping times of Brownian motion subject to the constraint that the distribution of is a given probability . The methods work for a large class of cost processes. (At a minimum we need the cost process to be measurable and -adapted. Continuity assumptions can be used to guarantee existence of solutions.) We find that for many of the cost processes one can come up with, the solution is given by the first hitting time of a barrier in a suitable phase space. As a by-product we recover classical solutions of the inverse first passage time problem/Shiryaev’s problem.
No abstract
Information is an inherent component of stochastic processes and to measure the distance between different stochastic processes it is not sufficient to consider the distance between their laws. Instead, the information which accumulates over time and which is mathematically encoded by filtrations has to be accounted for as well. The nested distance/bicausal Wasserstein distance addresses this challenge by incorporating the filtration. It is of emerging importance due to its applications in stochastic analysis, stochastic programming, mathematical economics and other disciplines.This article establishes a number of fundamental properties of the nested distance. In particular we prove that the nested distance of processes generates a Polish topology but is itself not a complete metric. We identify its completion to be the set of nested distributions, which are a form of generalized stochastic processes. We also characterize the extreme points of the set of couplings which participate in the definition of the nested distance, proving that they can be identified with adapted deterministic maps. Finally, we compare the nested distance to an alternative metric, which could possibly be easier to compute in practical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.