We collated contact tracing data from COVID-19 clusters in Singapore and Tianjin, China and estimated the extent of pre-symptomatic transmission by estimating incubation periods and serial intervals. The mean incubation periods accounting for intermediate cases were 4.91 days (95%CI 4.35, 5.69) and 7.54 (95%CI 6.76, 8.56) days for Singapore and Tianjin, respectively. The mean serial interval was 4.17 (95%CI 2.44, 5.89) and 4.31 (95%CI 2.91, 5.72) days (Singapore, Tianjin). The serial intervals are shorter than incubation periods, suggesting that pre-symptomatic transmission may occur in a large proportion of transmission events (0.4-0.5 in Singapore and 0.6-0.8 in Tianjin, in our analysis with intermediate cases, and more without intermediates). Given the evidence for pre-symptomatic transmission it is vital that even individuals who appear healthy abide by public health measures to control COVID-19.
Background: As the COVID-19 epidemic is spreading, incoming data allows us to quantify values of key variables that determine the transmission and the effort required to control the epidemic. We determine the incubation period and serial interval distribution for transmission clusters in Singapore and in Tianjin. We infer the basic reproduction number and identify the extent of pre-symptomatic transmission.Methods: We collected outbreak information from Singapore and Tianjin, China, reported from Jan.19-Feb.26 and Jan.21-Feb.27, respectively. We estimated incubation periods and serial intervals in both populations.Results: The mean incubation period was 7.1 (6.13, 8.25) days for Singapore and 9 (7.92, 10.2) days for Tianjin. Both datasets had shorter incubation periods for earlier-occurring cases. The mean serial interval was 4.56 (2.69, 6.42) days for Singapore and 4.22 (3.43, 5.01) for Tianjin. We inferred that early in the outbreaks, infection was transmitted on average 2.55 and 2.89 days before symptom onset (Singapore, Tianjin). The estimated basic reproduction number for Singapore was 1.97 (1.45, 2.48) secondary cases per infective; for Tianjin it was 1.87 (1.65, 2.09) secondary cases per infective.Conclusions: Estimated serial intervals are shorter than incubation periods in both Singapore and Tianjin, suggesting that pre-symptomatic transmission is occurring. Shorter serial intervals lead to lower estimates of R0, which suggest that half of all secondary infections should be prevented to control spread.
BackgroundDeep learning has proven to be a powerful technique for transcription factor (TF) binding prediction, but requires large training datasets. Transfer learning can reduce the amount of data required for deep learning, while improving overall model performance, compared to training a separate model for each new task.ResultsWe assess a transfer learning strategy for TF binding prediction consisting of a pre-training step, wherein we train a multi-task model with multiple TFs, and a fine-tuning step, wherein we initialize single-task models for individual TFs with the weights learned by the multi-task model, after which the single-task models are trained at a lower learning rate. We corroborate that transfer learning improves model performance, especially if in the pre-training step the multi-task model is trained with biologically-relevant TFs. We show the effectiveness of transfer learning for TFs with ∼500 ChIP-seq peak regions. Using model interpretation techniques, we demonstrate that the features learned in the pre-training step are refined in the fine-tuning step to resemble the binding motif of the target TF (i.e. the recipient of transfer learning in the fine-tuning step). Moreover, pre-training with biologically-relevant TFs allows single-task models in the fine-tuning step to learn features other than the motif of the target TF.ConclusionsOur results confirm that transfer learning is a powerful technique for TF binding prediction.
Sequence-based deep learning models, particularly convolutional neural networks (CNNs), have shown superior performance on a wide range of genomic tasks. A key limitation of these models is the lack of interpretability, slowing their broad adoption by the genomics community. Current approaches to model interpretation do not readily reveal how a model makes predictions, can be computationally intensive, and depend on the implemented architecture. Here, we introduce ExplaiNN, an adaptation of neural additive models1 for genomic tasks wherein predictions are computed as a linear combination of multiple independent CNNs, each consisting of a single convolutional filter and fully connected layers. This approach brings together the expressivity of CNNs with the interpretability of linear models, providing global (cell state level) as well as local (individual sequence level) insights of the biological processes studied. We use ExplaiNN to predict transcription factor (TF) binding and chromatin accessibility states, demonstrating performance levels comparable to state-of-the-art methods, while providing a transparent view of the model’s predictions in a straightforward manner. Applied to de novo motif discovery, ExplaiNN detects equivalent motifs to those obtained from specialized algorithms across a range of datasets. Finally, we present ExplaiNN as a plug and play platform in which pre-trained TF binding models and annotated position weight matrices from reference databases can be combined in a simple framework. We expect that ExplaiNN will accelerate the adoption of deep learning by biological domain experts in their daily genomic sequence analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.