Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted application, limiting their universality. “Reconfigurable memristors” that combine both ionic diffusive and drift mechanisms could address these limitations, but they remain elusive. Here we present a reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching between diffusive/volatile and drift/non-volatile modes by controllable electrochemical reactions. Judicious selection of the perovskite nanocrystals and organic capping ligands enable state-of-the-art endurance performances in both modes – volatile (2 × 106 cycles) and non-volatile (5.6 × 103 cycles). We demonstrate the relevance of such proof-of-concept perovskite devices on a benchmark reservoir network with volatile recurrent and non-volatile readout layers based on 19,900 measurements across 25 dynamically-configured devices.
Memristive devices represent a promising technology for building neuromorphic electronic systems. In addition to their compactness and non-volatility features, they are characterized by computationally relevant physical properties, such as state-dependence, non-linear conductance changes, and intrinsic variability in both their switching threshold and conductance values, that make them ideal devices for emulating the bio-physics of real synapses. In this paper we present a spiking neural network architecture that supports the use of memristive devices as synaptic elements, and propose mixed-signal analog-digital interfacing circuits which mitigate the effect of variability in their conductance values and exploit their variability in the switching threshold, for implementing stochastic learning. The effect of device variability is mitigated by using pairs of memristive devices configured in a complementary push-pull mechanism and interfaced to a current-mode normalizer circuit. The stochastic learning mechanism is obtained by mapping the desired change in synaptic weight into a corresponding switching probability that is derived from the intrinsic stochastic behavior of memristive devices. We demonstrate the features of the CMOS circuits and apply the architecture proposed to a standard neural network hand-written digit classification benchmark based on the MNIST data-set. We evaluate the performance of the approach proposed on this benchmark using behavioral-level spiking neural network simulation, showing both the effect of the reduction in conductance variability produced by the current-mode normalizer circuit, and the increase in performance as a function of the number of memristive devices used in each synapse.Neuromorphic computing systems comprise synapse and neuron circuits arranged in a massively parallel manner to support the emulation of large-scale spiking neural networks 1-9 . In many of these systems, and in particular in neuromorphic processing devices designed to overcome the von-Neumann bottleneck problem 7,8,10-14 , the bulk of the silicon real-estate is taken up by synaptic circuits that integrate in the same area both memory and computational primitives. To save area and maximize density in such devices, one possible approach is to implement very basic synapse circuits arranged in dense cross-bar arrays [15][16][17][18][19] . However, such approach is likely to relegate the role of the synapse to a basic multiplier 14,20 . In biology, synapses are extremely sophisticated structures that exhibit complex and powerful computational properties, including temporal dynamics, state-dependence, and stochastic learning behavior. The challenge is to design neuromorphic circuits that emulate these computational properties, and are also compact and low power. Memristive devices have recently emerged as nano-scale devices which provide a promising technology for addressing these problems 31,46 . These devices offer a compact and efficient solution to model synaptic weights since they are non-volatile, have ...
Spiking neural networks (SNNs) employing memristive synapses are capable of life-long online learning. Because of their ability to process and classify large amounts of data in real-time using compact and low-power electronic systems, they promise a substantial technology breakthrough. However, the critical issue that memristor-based SNNs have to face is the fundamental limitation in their memory capacity due to finite resolution of the synaptic elements, which leads to the replacement of old memories with new ones and to a finite memory lifetime. In this study we demonstrate that the nonlinear conductance dynamics of memristive devices can be exploited to improve the memory lifetime of a network. The network is simulated on the basis of a spiking neuron model of mixed-signal digital-analogue sub-threshold neuromorphic CMOS circuits, and on memristive synapse models derived from the experimental nonlinear conductance dynamics of resistive memory devices when stimulated by trains of identical pulses. The network learning circuits implement a spike-based plasticity rule compatible with both spike-timing and rate-based learning rules. In order to get an insight on the memory lifetime of the network, we analyse the learning dynamics in the context of a classical benchmark of neural network learning, that is hand-written digit classification. In the proposed architecture, the memory lifetime and the performance of the network are improved for memristive synapses with nonlinear dynamics with respect to linear synapses with similar resolution. These results demonstrate the importance of following holistic approaches that combine the study of theoretical learning models with the development of neuromorphic CMOS SNNs with memristive devices used to implement life-long on-chip learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.