The development of new control algorithms in vehicles requires high economic resources, mainly due to the use of generic real-time instrumentation and control systems. In this work, we proposed a low-cost electronic control unit (ECU) that could be used for both development and implementation. The proposed electronic system used a hybrid system on chip (SoC) between a field-programmable gate array (FPGA) and an Advanced RISC (reduced instruction set computer) Machine (ARM) processor that allowed the execution of parallel tasks, fulfilling the real-time requirements that vehicle controls demand. Another feature of the proposed electronic system was the recording of measured data, allowing the performance of the implemented algorithm to be evaluated. All this was achieved by using modular programming that, without the need for a real-time operating system, executed the different tasks to be performed, exploiting the parallelism offered by the FPGA as well as the dual core of the ARM processor. This methodology facilitates the transition between the designing, testing, and implementation stages in the vehicle. In addition, our system is programmed with a single binary file that integrates the code of all processors as well as the hardware description of the FPGA, which speeds up the updating process. In order to validate and demonstrate the performance of the proposed electronic system as a tool for the development and implementation of control algorithms in vehicles, a series of tests was carried out on a test bench. Different traction control system (TCS) algorithms were implemented and the results were compared.
The performance of vehicle safety systems depends very much on the accuracy of the signals coming from vehicle sensors. Among them, the wheel speed is of vital importance. This paper describes a new method to obtain the wheel speed by using Sin-Cos encoders. The methodology is based on the use of the Savitzky–Golay filters to optimally determine the coefficients of the polynomials that best fit the measured signals and their time derivatives. The whole process requires a low computational cost, which makes it suitable for real-time applications. This way it is possible to provide the safety system with an accurate measurement of both the angular speed and acceleration of the wheels. The proposed method has been compared to other conventional approaches. The results obtained in simulations and real tests show the superior performance of the proposed method, particularly for medium and low wheel angular speeds.
Tire models are of great importance for precise investigations of vertical vehicle dynamics, including vehicular safety and riding comfort. An adequate modelling of the tire is crucial to properly reproduce vehicle vertical behavior in simulations and to evaluate the influence of the tire in the overall performance of the suspension system. This paper introduced vehicle single-point tire models and, thereafter, investigated the influence of the excitation frequency and inflation pressure on the damping and stiffness coefficients of the proposed tires experimentally. In this manner, a test-bench was used to obtain the model parameters of a light vehicle tire and a motorcycle tire. Given the obtained results, it has been observed that both factors have a significant effect on the parameters of the proposed tire models. Moreover, a quarter car suspension model was investigated using the modelled tires to illustrate the influence of the correct characterization of the tire on the vertical suspension performance. INDEX TERMS Automotive testing, hysteresis, road vehicles, single point models, tire models, vehicle vertical dynamics, viscoelasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.