Meandering channels extensively dissect fluvial and tidal landscapes, critically controlling their morphodynamic evolution and sedimentary architecture. In spite of an apparently striking dissimilarity of the governing processes, planform dimensions of tidal and fluvial meanders consistently scale to local channel width, and previous studies were unable to identify quantitative planimetric differences between these landforms. Here we use satellite imagery, measurements of meandering patterns, and different statistical analyses applied to about 10,000 tidal and fluvial meanders worldwide to objectively disclose fingerprints of the different physical processes they are shaped by. We find that fluvial and tidal meanders can be distinguished on the exclusive basis of their remotely-sensed planforms. Moreover, we show that tidal meanders are less morphologically complex and display more spatially homogeneous characteristics compared to fluvial meanders. Based on existing theoretical, numerical, and field studies, we suggest that our empirical observations can be explained by the more regular processes carving tidal meanders, as well as by the higher lithological homogeneity of the substrates they typically cut through. Allowing one to effectively infer processes from landforms, a fundamental inverse problem in geomorphology, our results have relevant implications for the conservation and restoration of tidal environments, as well as from planetary exploration perspectives.
This work addresses the signatures embedded in the planform geometry of meandering rivers consequent to the formation of floodplain heterogeneities as the river bends migrate. Two geomorphic features are specifically considered: scroll bars produced by lateral accretion of point bars at convex banks and oxbow lake fills consequent to neck cutoffs. The sedimentary architecture of these geomorphic units depends on the type and amount of sediment, and controls bank erodibility as the river impinges on them, favoring or contrasting the river migration. The geometry of numerically generated planforms obtained for different scenarios of floodplain heterogeneity is compared to that of natural meandering paths. Half meander metrics and spatial distribution of channel curvatures are used to disclose the complexity embedded in meandering geometry. Fourier Analysis, Principal Component Analysis, Singular Spectrum Analysis and Multivariate Singular Spectrum Analysis are used to emphasize the subtle but crucial differences which may emerge between apparently similar configurations. A closer similarity between observed and simulated planforms is attained when fully coupling flow and sediment dynamics (fully-coupled models) and when considering self-formed heterogeneities that are less erodible than the surrounding floodplain. Plain Language Summary This work concerns the modeling of the long-term evolution of meandering rivers flowinf above self-formed floodplains, i.e., floodplains that have been modified by the river itself. The erosion and deposition processes at the banks due to the flow field into the river introduce heterogeneity in the surface composition and thus in the spatial distribution of the erosional resistance, such that the river may experience faster or slower migration rates depending on its previous configurations (i.e., the migration history). Present results show that the heterogeneity in floodplain composition associated with the formation of geomorphic units (i.e., scroll bars and oxbow lakes) and the choice of a reliable flow field model to drive channel migration are two fundamental ingredients for reproducing correctly the long-term morphodynamics of alluvial meanders. Floodplain heterogeneity was found to affect both the temporal and spatial distributions of meander metrics, eventually leading to a closer statistical similarity between simulated and natural planform shapes.
The saltwater intrusion in the estuary of the Adige River has been investigated by a two-dimensional finite volume shock-capturing model. Owing to the relative small tide range characterizing the river mouth, a sharply stratified salt wedge tends to form during low discharge periods (e.g. in summer). Suitable hydraulic relations have been introduced to model the action of a submerged barrage, located close to the estuary mouth and built to hinder seawater intrusion. Field measurements of salinity profiles have been used to calibrate the model. The numerical results suggest that, as a consequence of increased water withdrawal that occurred in the last years, the barrage does not prevent efficiently the intrusion of the salt wedge any more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.