When modeling of tumor-driven angiogenesis, a major source of analytical and computational complexity is the strong coupling between the kinetic parameters of the relevant stochastic branching-and-growth of the capillary network, and the family of interacting underlying fields. To reduce this complexity, we take advantage of the system intrinsic multiscale structure: we describe the stochastic dynamics of the cells at the vessel tip at their natural mesoscale, whereas we describe the deterministic dynamics of the underlying fields at a larger macroscale. Here, we set up a conceptual stochastic model including branching, elongation, and anastomosis of vessels and derive a mean field approximation for their densities. This leads to a deterministic integro-partial differential system that describes the formation of the stochastic vessel network. We discuss the proper capillary injecting boundary conditions and include the results of relevant numerical simulations.
A recent conceptual model of tumor-driven angiogenesis including branching, elongation, and anastomosis of blood vessels captures some of the intrinsic multiscale structures of this complex system, yet allowing to extract a deterministic integro-partial differential description of the vessel tip density [Phys. Rev. E 90, 062716 (2014)]. Here we solve the stochastic model, show that ensemble averages over many realizations correspond to the deterministic equations, and fit the anastomosis rate coefficient so that the total number of vessel tips evolves similarly in the deterministic and ensemble averaged stochastic descriptions.
Recently, numerical simulations of a stochastic model have shown that the density of vessel tips in tumor-induced angiogenesis adopts a solitonlike profile [Sci. Rep. 6, 31296 (2016)2045-232210.1038/srep31296]. In this work, we derive and solve the equations for the soliton collective coordinates that indicate how the soliton adapts its shape and velocity to varying chemotaxis and diffusion. The vessel tip density can be reconstructed from the soliton formulas. While the stochastic model exhibits large fluctuations, we show that the location of the maximum vessel tip density for different replicas follows closely the soliton peak position calculated either by ensemble averages or by solving an alternative deterministic description of the density. The simple soliton collective coordinate equations may also be used to ascertain the response of the vessel network to changes in the parameters and thus to control it.
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.